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On QE Algorithms over Algebraically Closed Field

Extended Abstract
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1. Introduction

Quantifier Elimination(QE) in the domain of an algebraically closed field is much simpler than that
of a real closed field at least from a theoretical point of view. Basically, we have two naive methods.

We can recursively eliminate a quantified variable step by step using only GCD computations of
parametric unary polynomials. (See Chapter 1 of [2] for example.) This method, we call GCD-QE in
this paper, is implemented in the computer algebra system Mathematica with a more sophisticated
algorithm using Gröbner bases computations[8]. As far as we know, it is the most efficient existing
implementation among others such as [4]. When the number of quantified variables is not small,
however, the output often consists of very complicated form. As long as we use GCD-QE, we often
encounter the blowup of the recursive steps.

The another method is based on the computation of a comprehensive Gröbner system(CGS for
short), we call it CGS-QE in this paper. We can eliminate quantified variables simultaneously by
computing only one CGS. With a series of resent results of [11, 9, 6, 7, 10] we now have practical
implementations to compute CGS’s. Among the algorithms introduced by them, the algorithm intro-
duced in [10] often produces a CGS with a minimum number of segments, which enables us to obtain
a concise form of the equivalent quantifier-free formula.

We implemented his algorithm on the computer algebra system Risa/Asir[1] to compare the
above two methods. (We also implemented GCD-QE algorithm used in Mathematica with a slight
improvement on Risa/Asir in order for the comparison to be fair.) According to our computation
experiments, in most cases the output of CGS-QE algorithm is more concise than the output of GCD-
QE algorithm. However, when we have many inequations in a given quantified formula, we sometimes
have examples such that neither GCD-QE algorithm nor CGS-QE algorithm terminates. In order to
handle such hard examples, we introduced a new algorithm which combines CGS-QE and GCD-QE
algorithms, and implemented it on Risa/Asir. For many examples which are not handled by either
GCD-QE or CGS-QE algorithm, we can successfully get the equivalent quantifier free formulas using
our program.

Note that for QE in an algebraically closed field, it suffices to give an algorithm for the following
basic form:

∃X1∃X2 . . . ∃Xn(f1(Y1, . . . , Ym, X1, . . . , Xn) = 0 ∧ · · · ∧ fs(Y1, . . . , Ym, X1, . . . , Xn) = 0∧
g1(Y1, . . . , Ym, X1, . . . , Xn) 6= 0 ∧ · · · ∧ gt(Y1, . . . , Ym, X1, . . . , Xn) 6= 0)

In this paper, we deal with only this basic formula. In section 2, we give a minimum description
concerning stability of a Gröbner basis and CGS. In section 3, we describe the GCD-QE algorithm
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implemented in Mathematica. In section 4, we describe the CGS-QE algorithm. In section 5, we
introduce our new algorithm.

2. Stability of Gröbner Basis and CGS

We use the following notations. K denotes a field and K its algebraic closure. K[Ȳ , X̄] denotes a poly-
nomial ring with variables Ȳ = Y1, . . . , Ym and X̄ = X1, . . . , Xn. σ denotes a homomorphism from
K[Ȳ ] to K, i.e. a specialization of Ȳ with elements c1, . . . , cm of K, it is also naturally extended to a
homomorphism from K[Ȳ , X̄] to K[X̄]. T (X̄) denotes the set of terms consisting of X̄. An admissible
term order on T (Ȳ , X̄) such that each Xi is greater than any term in T (Ȳ ) is denotes by X̄ � Ȳ .
We fix an admissible term order > on T (X̄), LM(h), LT (h) and LC(h) denotes the leading monomial,
the leading term and the leading coefficient respectively of h ∈ K[Ȳ , X̄] w.r.t. > regarding K[Ȳ , X̄]
as a polynomial ring (K[Ȳ ])[X̄] over the coefficient ring K[Ȳ ]. Note that LM(h) = LC(h)LT (h).
For an ideal I of a polynomial ring over K, its variety in K is denoted by V(I).

We begin with the following result concerning stability of Gröbner basis, which is an easy conse-
quence of Theorem 3.1 of [5] as observed in [6, 7].

Theorem 1
Let I be an ideal of K[Ȳ , X̄] and G be its Gröbner basis w.r.t. > regarding K[Ȳ , X̄] as a polyno-
mial ring (K[Ȳ ])[X̄]. let G = {g1, . . . , gs, . . . , gt} such that G ∩K[Ȳ ] = {gs+1, . . . , gt} and σ(gs+1) =
0, . . . , σ(gt) = 0. Let {LT (gn1

), . . . , LT (gnl
)} be the minimal subset of {LT (g1), . . . , LT (gs)} concern-

ing the order of divisibility, that is each term of {LT (g1), . . . , LT (gs)} is divisible by some term
of {LT (gn1), . . . , LT (gnl

)} and any term of {LT (gn1), . . . , LT (gnl
)} is not divisible by others. If

σ(LM(gn1)) 6= 0, . . . , σ(LM(gnl
)) 6= 0, then G′ = {σ(gn1), . . . , σ(gnl

)} is a Gröbner basis of 〈σ(I)〉
w.r.t. > regardless whether σ(LM(gi)) = 0 or not for each i ∈ {1, . . . , s} − {n1, . . . , nl}.

Note that we can compute a Gröbner basis of (K[Ȳ ])[X̄] using a term order of T (Ȳ , X̄) which
extends > and satisfies X̄ � Ȳ . We next give a definition of CGS.

Definition 1
For a finite subset F of K[Ȳ , X̄], a finite subset G = {(G1, P1, Q1), . . . , (Gs, Ps, Qs)} of triples which
satisfies the following properties is called a CGS(comprehensive Gröbner system) of F with parameters
Ȳ and main variables X̄ w.r.t. >. Where each Gi is a finite subset of K[Ȳ , X̄] and each Pi, Qi is a
finite subset of K[Ȳ ].

(i) ∪si=1V(〈Pi〉)− V(〈Qi〉) = K
m

, (V(〈Pi〉)− V(〈Qi〉)) ∩ (V(〈Pj〉)− V(〈Qj〉)) = ∅ for i 6= j.
(ii) For each c̄ ∈ V(〈Pi〉) − V(〈Qi〉), Gi(c̄, X̄) = {g(c̄, X̄) : g ∈ Gi} is a Gröbner basis of 〈f(c̄, X̄)〉 in
K[X̄]

w.r.t. >.
In addition, if each Gi(c̄, X̄) is a reduced(minimal) Gröbner basis, G is said to be reduced(minimal).
(We do not require the polynomials to be monic.)

3. GCD-QE algorithm

We give a brief sketch of GCD-QE algorithm implemented in Mathematica packages Reduce and
Resolve.
The basic formula

∃X1∃X2 . . . ∃Xn(f1(Ȳ , X̄) = 0 ∧ · · · ∧ fs(Ȳ , X̄) = 0 ∧ g1(Ȳ , X̄) 6= 0 ∧ · · · ∧ gt(Ȳ , X̄) 6= 0)

is equivalent to the following form with g(Ȳ , X̄) = g1(Ȳ , X̄) · · · gt(Ȳ , X̄).

∃X1∃X2 . . . ∃Xn(f1(Ȳ , X̄) = 0 ∧ · · · ∧ fs(Ȳ , X̄) = 0 ∧ g(Ȳ , X̄) 6= 0)

If we eliminate ∃Xn from ∃Xn(f1(Ȳ , X̄) = 0 ∧ · · · ∧ fs(Ȳ , X̄) = 0 ∧ g(Ȳ , X̄) 6= 0) and obtain an
equivalent quantifier free formula, then by converting it to a ∨∧-canonical form we have basic formulas
with quantifies ∃X1∃X2 . . . ∃Xn−1. Therefore, as long as we give an algorithm for one quantifier, we
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can recursively apply it to a general formula to eliminate all quantifiers. For the case K = Q, in
Mathematica packages Reduce and Resolve, this strategy is basically used with some sophisticated
technique using Gröbner bases computations.
GCD-QE algorithm of Mathematica
Input: ∃X(f1(Ȳ , X) = 0 ∧ · · · ∧ fs(Ȳ , X) = 0 ∧ g(Ȳ , X) 6= 0)
Output: The equivalent quantifier free formula
Step1. Compute the reduced Gröbner basis G = {g1(Ȳ , X), . . . , gl(Ȳ , X), h1(Ȳ ), . . . , ht(Ȳ )}

of 〈f1, . . . , fs〉 w.r.t. a term order X � Ȳ .
Step2. Note that the given formula is false unless h1(Ȳ ) = 0∧· · ·∧ht(Ȳ ) = 0. Let c̄ ∈ Cm be such that
h1(c̄) = 0 ∧ · · · ∧ ht(c̄) = 0. Note that for Ȳ = c̄ the given formula is true if and only if g(c̄, X) does
not belong to the radical ideal of 〈f1(c̄, X), . . . , fs(c̄, X)〉. Considering each gi as a unary polynomial
of X, choose gi which has the least degree. Let d be its degree and p(Ȳ ) be its coefficient. If p(c̄) 6= 0
then {gi(c̄, X)} is a Gröbner basis of 〈f1(c̄, X), . . . , fs(c̄, X)〉, which is an easy consequence of Theorem
1. In another word, gi(c̄, X) is the GCD of f1(c̄, X), . . . , fs(c̄, X). Therefore, g(c̄, X) belongs to the
radical ideal 〈f1(c̄, X), . . . , fs(c̄, X)〉 if and only if the remainder of g(c̄, X)d by gi(c̄, X) is equal to 0.
Compute the remainder of the pseudo division of g(Ȳ , X)d by gi(Ȳ , X), let p1(Ȳ ), . . . , pr(Ȳ ) be its
coefficients. When p(c̄) 6= 0, the given formula for Ȳ = c̄ is equivalent to p1(c̄) 6= 0 ∨ · · · ∨ pr(c̄) 6= 0.
When p(c̄) = 0, we have to do another computation. For the new input formula ∃X(f1(Ȳ , X) =
0 ∧ · · · ∧ fs(Ȳ , X) = 0 ∧ p(Ȳ ) = 0 ∧ g(Ȳ , X) 6= 0), proceed the above computation recursively and let
φ(Ȳ ) be its output. Then the output for the original input is

φ(Ȳ ) ∨ (h1(Ȳ ) = 0 ∧ · · · ∧ ht(Ȳ ) = 0 ∧ p(Ȳ ) 6= 0 ∧ (p1(Ȳ ) 6= 0 ∨ · · · ∨ pr(Ȳ ) 6= 0)).
If we use the result of [3], {g1(c̄, X), . . . , gl(c̄, X)} is always a Gröbner basis. Hence, as long as it
contains at least one non-zero polynomial, GCD is determined and we do not need any further recursive
computation. Let r1(Ȳ ), . . . , rk(Ȳ ) be an enumeration of all polynomials of Q[Ȳ ] which appear as a
coefficient of some polynomial among g1(Ȳ , X), . . . , gl(Ȳ , X). We need a further recursive computation
only if 〈r1(Ȳ ), . . . , rk(Ȳ )〉 6= 〈1〉.
In our implementation of GCD-QE algorithm on Risa/Asir we use this strategy.

When we have many quantifiers, recursive use of this algorithm encounters a blowup of a search
space. For the input formula,
∃x∃y∃z(x∗y+a∗x∗z+y ∗z−1 = 0∧x∗y ∗z+x∗z+x∗y+a = 0∧x∗z+y ∗z−a∗z−x−y−1 = 0)
either of the following Mathematica inputs returns a complicated formula, although the given formula
is always true. For checking it, we need further process of simplification.

Resolve[Exists[{x,y,z},x*y+a*x*z+y*z-1==0&&x*y*z+x*z+x*y+a==0&&x*z+y*z-a*z-x-y-1==0]]

Reduce[Exists[{x,y,z},x*y+a*x*z+y*z-1==0&&x*y*z+x*z+x*y+a==0&&x*z+y*z-a*z-x-y-1==0],

Complex]

For the input formula,
∃x∃y∃z(x∗y+a∗x∗z+y ∗z−1 = 0∧x∗y ∗z+x∗z+x∗y+a = 0∧x∗z+y ∗z−b∗z−x−y−1 = 0),
either of the above Mathematica programs or our GCD-QE implementation does not terminate. Note
that the above examples contains no inequations. For such formulas, we have observed in practice that
the CGS-QE algorithm is often more efficient.

4. CGS-QE algorithm

We can eliminate all quantifiers ∃X1∃X2 . . . ∃Xn simultaneously by computing only one CGS.
CGS-QE algorithm
Input: ∃X1∃X2 . . . ∃Xn(f1(Ȳ , X̄) = 0 ∧ · · · ∧ fs(Ȳ , X̄) = 0 ∧ g1(Ȳ , X̄) 6= 0 ∧ · · · ∧ gt(Ȳ , X̄) 6= 0)
Output: The equivalent quantifier free formula
Let Z̄ = Z1, . . . , Zt be new variables. Compute a minimal CGS G = {(G1, P1, Q1), . . . , (Gr, Pr, Qr)}
of
{f1(Ȳ , X̄), . . . , fs(Ȳ , X̄), g1(Ȳ , X̄)Z1 − 1, . . . , gt(Ȳ , X̄)Zt − 1} with parameters Ȳ and main variables
X̄, Z̄. We order Gi’s, so that each G1, . . . , Gk contains at least one polynomial including some main
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variable, and each Gk+1, . . . , Gr contains only polynomials of parameters. When k = r, the output
is true, otherwise the output formula is given by φ1 ∨ · · · ∨ φk ∨ θk+1 ∨ · · · ∨ θr, where each φi
and θj is given as follows. Let Pi = {p1(Ȳ ), . . . , pa(Ȳ )}, Qi = {q1(Ȳ ), . . . , qb(Ȳ )}, then φi ≡ p1(Ȳ ) =
0∧· · ·∧pa(Ȳ ) = 0∧(q1(Ȳ ) 6= 0∨· · ·∨qb(Ȳ ) 6= 0). For j = k+1, . . . , r, let Pj = {p1(Ȳ ), . . . , pa(Ȳ )}, Qj =
{q1(Ȳ ), . . . , qb(Ȳ )} and Gj = {h1(Ȳ ), . . . , hc(Ȳ )}, then θj ≡ p1(Ȳ ) = 0 ∧ · · · ∧ pa(Ȳ ) = 0 ∧ (q1(Ȳ ) 6=
0 ∨ · · · ∨ qb(Ȳ ) 6= 0) ∧ h1(Ȳ ) = 0 ∧ · · · ∧ hc(Ȳ ) = 0.

According to our experiment, as long as this algorithm terminates, the output is more concise
than GCD-QE algorithm. For the two examples of the previous section, our CGS program returns
true within a second on a standard laptop computer. When we have many inequations in the given
formula i.e. t is not small, however, we have to induce many new variables Z̄. Though we can replace
g1(Ȳ , X̄)Z1−1, . . . , gt(Ȳ , X̄)Zt−1 by a polynomial g1(Ȳ , X̄) · · · gt(Ȳ , X̄)Z−1 with a single variable Z,
we have to use a huge polynomial g1(Ȳ , X̄) · · · gt(Ȳ , X̄). In such a case, CGS computation sometimes
does not terminate.

5. Hybrid algorithm

In order to handle hard cases, we introduce a new algorithm which is a modification of CGS-QE
algorithm partially using GCD-QE algorithm, we call it a hybrid algorithm.
Each of the practical algorithms of CGS introduced in [9, 6, 7, 10] is a modification of Suzuki-Sato’s
CGS algorithm [11]. In those algorithms, we incrementally divide parametric spaces, and proceed a
Gröbner basis computation for each space in parallel. According to our experiments, when the CGS
computation does not terminate, in many cases there are only a few Gröbner bases computations
which do not terminate. For a quantifier elimination, we do not actually need a CGS. For a divided
parametric space, if the Gröbner bases computation does not terminate, we can quit it and consider
the original formula with the additional condition used for the divided parametric space. In the CGS
algorithm of [10], the divided parametric space is given in a form of V(P )−V(Q) for finite subsets P
and Q of K[Ȳ ]. In this parametric space, the original formula is equivalent to the following form:

∃X1∃X2 . . . ∃Xn(f1(Ȳ , X̄) = 0 ∧ · · · ∧ fs(Ȳ , X̄) = 0 ∧ g1(Ȳ , X̄) 6= 0 ∧ · · · ∧ gt(Ȳ , X̄) 6= 0
∧p1(Ȳ ) = 0 ∧ · · · ∧ pa(Ȳ ) = 0)

where P = {p1(Ȳ ) . . . , pa(Ȳ )}. In our hybrid algorithm, we proceed GCD-QE algorithm to handle it.
Since we have new extra conditions p1(Ȳ ) = 0∧· · ·∧pa(Ȳ ) = 0, there is a much better chance that the
computation terminates than the CGD-QE computation for the original formula. This rather simple
idea leads us to a drastic improvement as described in the introduction.

6. Conclusion and Remarks

In the implementation of our hybrid algorithm, whenever we obtain a divided parametric space,
we proceed both computations of CGS and GCD-QE in parallel, we adopt the computation which
terminates first and quit the other one. We use only equations by P since the procedure of the next
GCD-QE algorithm will be more complicated if we use inequations by Q. We might have a better
implementation if we use inequations. For the quantifier elimination of a basic formula with recursive
applications of GCD-QE algorithm, we also have two choices for each step. We, however, do not
adopt CGS-QE algorithm for such a case in the hybrid algorithm, since the implementation becomes
extremely complicated.

The characteristic set methods such as [12, 13, 14] are altarnatives to GCD-QE algorithm. They
would be more efficient than GCD-QE algorithm, though we have not made an implementation yet.
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