BDI: A New Decidable First-order Clause Class

Manuel Lamotte-Schubert and Christoph Weidenbach

Abstract. BDZ (Bounded Depth Increase) is a new decidable first-order clause class. It strictly
includes known classes such as PVD. The arity of function and predicate symbols as well as the
shape of atoms is not restricted in BDZ. Instead the shape of "cycles” in resolution inferences is
restricted such that the depth of generated clauses may increase but is still finitely bound. The
BDI class is motivated by real world problems where function terms are used to represent record
structures. We show that the hyper-resolution calculus modulo redundancy elimination terminates
on BDZ clause sets. Employing this result to the ordered resolution calculus, we can also prove
termination of ordered resolution on BDZ, yielding a more efficient decision procedure.

1. Introduction

Identifying decidable fragments of first-order logic has a long tradition in automated reasoning re-
search. It started with the specification of decidable quantor prefix classes at the beginning of the 20"
century (see [4] for an overview). After the invention of automated reasoning calculi, in particular
resolution-based calculi, it moved to the identification of decidable clause classes (e.g., see [3, 15, 6,
9, 10, 1]) which then serve, e.g., as (background) fragments for effective reasoning on tree automata
properties, reachability problems in security, knowledge representation formalisms, or data structures.
Decidability is shown via termination of the resolution calculus on the clause class. In particular, the
resolution calculus terminates on a set of clauses, if the length (number of literals in a clause) and
depth (maximal depth of a literal in a clause) of newly generated clauses can be finitely bound. For
all of the above mentioned clause classes the term depth of newly generated clauses by the respective
resolution (superposition) strategy does not grow. To this end the depth and structure of terms is a
priori restricted, e.g., in some of the above classes only shallow linear terms, like f(z1,...,z,), are
permitted.

In this paper we define a new clause class called BDZ (Bounded Depth Increase) where the term
structure of clauses belonging to the class is not restricted at all. In addition, and in contrast to, e.g.,
the monadic classes, predicates may have an arbitrary number of arguments. An overall bounded term
depth is guaranteed by restricting the form of recursive definitions for predicates that occur in the
clause set. For the BDZ class any considered resolvent with have depth at most 2n where n is the
maximal depth of clause in the initial set (Theorem 4.2). By requiring that all variables occurring in
a positive literal of a clause, also occur in a negative one of that clause, (positive) hyper-resolution
generates only ground clauses (Lemma 4.1), implying together with the depth bound termination and
therefore decidability of the BDZ class.

M. Kosta and T. Sturm, eds. Proceedings of the MACIS 2013, Nanning, China, December 11-13, 2013.

44 Manuel Lamotte-Schubert and Christoph Weidenbach

For example, consider the BDZ clause set
(1)
(2) P(z,y,z
(3) Q. £(2)
(4) R(f(g(x)),y, h(2)
(5) P(a,b,c
where clauses are written in implication form. The clauses (2)-(4) recursively define the predicate P.
By resolving clauses (1) and (2) the clause
5 Q(f(a), hla), F(g(f(@))), S(f(a), h(a))

is generated causing an overall depth increase by the term f(g(f(a))), the third argument of @
through the first argument of P. The deeper term is a result of z occurring at depth 0 in P(z,y, z) in
clause (2) and at depth 2 in the third argument of Q(z,y, f(g(x))). In this case, we require that the
third argument of @) cannot show up by resolving along the cycle (2)-(4) as a first argument of P. We
ensure this by the concept of a watched argument (Definition 3.4). The terms at watched arguments
of an atom are assumed to never increase during any derivation and argument positions holding terms
with increased variable depth only depend on watched argument positions. For the example, the
argument positions 1,2 of the predicates () and P are watched and all atoms with predicates P, @,
satisfy this requirement (Definition 3.7-(iii)). A second increase in depth is potentially produced by
clause (3), at the first argument of the R atom, where the clauses (2)-(4) also recursively define R.
This clause does also not eventually generate terms of increasing depth, because all occurrences of R
atoms in the clause set are similar (see Section 3), i.e., they have the same tree shape, and thus can
only generate a bounded increase in depth (Definition 3.6). Finally, for the clauses (1), (4), (5) the
depth of occurrences of variables in positive literals is smaller than their respective depth in negative
literals. As a result, positive hyper-resolution terminates on the above clause set.

The BDZI class is not included in any known decidable clause class. It obviously generalizes
PVD [6]. The class of guarded formulae, originally proposed by Andréka et al. [12], was shown to be
decidable through an effectively bounded finite model property. The first resolution decision procedure
for the guarded fragment has been described by de Nivelle [13]. It has been further studied by Georgieva
et al. [7] resulting in the fragment GF1~, for which hyper-resolution is a decision procedure. The
class GF1™ includes function symbols but does not support non-guarded formulas. For example, a
transitivity clause is not included in this fragment but contained in our class BDZ. Further classes that
can be decided by resolution (superposition) without generating clauses with a term depth increase
are the monadic class [3], the class of shallow sort theories [15], or classes related to tree automata [10].

Another related class is BU [8], which generalizes the set of all clause sets one can obtain from
GF17, includes function symbols, and is also decidable by hyper-resolution. The class definition of
BU takes special care of variables, for example, every non-positive functional clause must contain a
covering negative literal which contains all the variables of the clause. Eventually this limits the depth
of clauses generated by hyper-resolution. In BDZ, we don’t require such conditions but instead limit
the form of recursive definitions.

The class BDZ is not artificial. It arose naturally out of our work on analyzing real-word autho-
rization structures as they occur, e.g., in enterprise relationship systems [11]. When modeling business
processes function terms occur out of newly created business objects. For example, a system user cre-
ating a purchase requisition out of a business requirement to buy some good = could result in clause
like

o — —

Lidld

User(y), BusReq(z), Authorized(y, PurchReq) — ToBeReleased (purchreq(y, z))

that is depth increasing in x and y. Typically, business processes are not recursive. But proving
properties of such processes and the underlying authorization setup requires in particular considering
clauses of the form

ToBeReleased (purchreq(y, 2)) — Authorized(y, PurchReq)

and now we have created a depth increasing, recursive clause structure. For this very simple example,
it is obvious that the two clauses can not result in a non-terminating hyper-resolution derivation.

BDI: A New Decidable First-order Clause Class 45

However, for the real-world authorization set ups we have considered, the full power of our new BDZ
class is needed to guarantee termination.

The remaining of the paper is organized as follows. We first constitute the notational background
including the ordered (hyper-)resolution calculus in Section 2. In Section 3, we formally define the new
clause class BDZ. The main ideas of the termination proof for the hyper-resolution calculus applied
to the new class are then presented in Section 4. Although hyper-resolution is a decision procedure
for BDZ, in practice and in particular in the context of authorization proofs it is generally not a
good choice, because it enumerates all ground consequences out of a given clause set. Therefore, in
Section 5 we prove decidability of our classes for ordered resolution with selection. Given a concrete
problem class, the ordered resolution calculus with selection offers a by far more fine grained control
on the size of the eventually generated clause set. Finally, we conclude the paper by investigating the
border between BDZ and undecidable clause classes and end with some further discussion on related
and future work.

2. Background

We follow the notation from [16] and [2]. We consider a first-order language without equality con-
structed over a signature 3 = (F,R), where F and R are non-empty, disjoint, in general infinite sets
of function and predicate symbols, respectively. Every function or predicate symbol has some fixed
arity. In addition, we assume a further, infinite set X of variable symbols disjoint from the symbols
in ¥. Then the set of all terms T (F,X) is defined as usual. A term not containing a variable is a
ground term. If t1,...,t, are terms and R € R is a predicate symbol with arity n, then R(¢1,...,t,)
is an atom. We sometimes write R(#) as a shortened version of R(t1, ..., t,) with arguments ty,...,t,.
An atom or the negation of an atom is called a literal. Disjunctions of literals are clauses where all
variables are implicitly universally quantified. Clauses are often denoted by their respective multisets
of literals where we write multisets in usual set notation. Alternatively to the multiset notation of
clauses, we write clauses in implication form I' — A where the multiset I" is called antecedent and
the multiset A is called succedent of the clause. The atoms in I denote negative literals while the the
atoms in A denote the positive literals in a clause.

Aposition is a word over the natural numbers. Let f(¢1,...,t,) be a term. The setpos(f(t1,...,t,))
of positions of a term is recursively defined as (i) the empty word e is a position in any term ¢ and
tle =t (ii) if ¢t|, = f(S1,...,8n), then p.i is a position in ¢ for all 4 = 1,...,n and t|,; = s;. The term
t[p/s] is obtained from ¢ by replacing ¢, in ¢ with s.

The function vars returns the set of variables for some term, atom, literal, clause. The depth of
a term ¢ is the maximal length of a position in the term: depth(t) = max({length(p) | p € pos(t)}.
The depth of a literal [—]P(t1,...,t,) is the maximal depth of its terms: depth([=]|P(t1,...,tn)) =
max({depth(t1), ..., depth(t,)}). The depth of a clause is the maximal depth of its literals, and in
the same manner, the depth of a set of literals is the maximal depth of its literals. Additionally, the
function depth is extended to variables and clauses (or sequences of literals) depth(z, C) returning the
maximal depth of an occurrence of the variable z € vars(C) in a clause C.

Ordered resolution is defined with respect to a reduction ordering > that is total on ground terms.
A reduction ordering > is a well-founded, transitive relation satisfying for all terms ¢, s, [, positions
p € pos(l) and substitutions o that whenever s > ¢t then l[p/sc] > l[p/to]. Any (reduction) ordering
>~ on terms (atoms) can be extended to clauses by considering clauses as multisets of occurrences of
atoms as described in [16].

For the termination proof of the BDZ clause class, inferences are computed only using the below
ordered hyper-resolution rule. All inferred clauses by hyper-resolution will be ground, so factoring
actually becomes condensation. As usual the calculus is based on a reduction ordering = that is total
on ground terms. Inference rules add the clause(s) below the bar to the current clause set.

46 Manuel Lamotte-Schubert and Christoph Weidenbach

Definition 2.1 (Ordered Hyper-Resolution). The inference
E]_,,En—>A —>A1,E; (1§z§n)
(= AJA, .. Ao

where
(i) . o is the simultaneous mgu of Ey,...,E,, E},... E!,
(ii). all Elo are strictly maximal in (— A;, Ef)o

is called an ordered hyper-resolution inference.

Definition 2.2 (Ordered Resolution). The inference

I = AL B By Ty — Ay
(1“1,1“2 — Al,Ag)J

where

(i) . o is the mgu of Ey and Es,

(ii). no literal in I'; is selected,

(iii). Eyo is strictly maximal in (T'y — Ay, Ey)o,

(iv). the atom Fso is selected or it is maximal in (E2,T's — As)o, and no literal in Ty is selected
is called an ordered resolution inference. If conditions (ii)-(iv) are dropped, the inference is called
resolution.

Definition 2.3 (Factoring). The inference
I'— A, E17 FEs
(F — A, El)CT

where

(i) . o is the mgu of E; and Es,
(if). no literal in I is selected,
(iii). Eyo is maximal in (I' = A, By, E3)o

is called factoring.

For the purpose of this paper the reduction rules subsumption and condensation suffice. Never-
theless, the general superposition redundancy criterion is applicable. A clause I'y — Ay subsumes a
clause I'y — Ay if for some substitution o we have I'yo C I'y and Ajo € As. A clause IV — A’ is a
condensation of a clause ' = A if IV — A’ subsumes I' =+ A and IV — A’ is obtained from I' — A
by instantiation and duplicate literal deletion.

Now the (ordered) hyper-resolution calculus consists of the rules (ordered) hyper-resolution,
factoring, condensation, and subsumption deletion and the (ordered) resolution calculus consists of
the rules (ordered) resolution, factoring, condensation, and subsumption deletion. We assume that
reduction rules are applied exhaustively and before the application of any inference rule.

3. The Clause Class BDZ

The class PVD (positive variable dominated) [6] is the starting point for the class definition of BDT.
The class PVD has already been proven to be decidable by hyper-resolution in [5]. In contrast to
the clause class PVD where the maximal depth of any derived clause by hyper-resolution does not
exceed the maximal depth of its parent clauses, the class BDZ permits to have such a growth of the
term depth for a derived clause. Clearly, this relaxation requires additional restrictions in order to
guarantee that hyper-resolution still remains a decision procedure for BDZ.

In the following, we start by defining some additional notions that are needed to define the
class BDZI. Let p be an arbitrary position of a term s (atom, literal). We call p an inner position if
there exists a position ¢ in s such that ¢ = p.r, r # €. Two atoms P(t1,...,t,) and Q(s1,...,8m)

BDI: A New Decidable First-order Clause Class 47

are called similar if pos(P(t1,...,t,)) = pos(Q(s1,...,5m)) and for all inner positions p we have
P(t1,...,tn)|p = Q(S1,---,Sm)|p, implying P = @ and n = m.

Definition 3.1 (PVD). A clause I' = A is PVD [6] (Positive Variable Dominated) if

(i) vars(A) C vars(T) (A is ground for T' =),
(ii) depth(z,A) < depth(z,T') for all x € vars(A).

Definition 3.2 (Depth Increasing). We call a clause C =T — P(t1,...,t,), A depth increasing if there
is a variable = € vars(C) and depth(z,t;) > depth(z,T') for some t; where 1 < i < n. The variable
x is called a depth increasing variable in C, P(ty,...,t,) a depth increasing atom in C, P a depth
increasing predicate in C, and ¢ a depth increasing argument position of P.

We call a clause C =T — P(t1,...,tn), A uniquely depth increasing if C is depth increasing,
and there is exactly one depth increasing argument position ¢ of P(t1,...,t,) such that for all depth
increasing variables @ € vars(C) we have depth(z, {P(t1,...,ti—1, T, tix1,...,tn), A}) < depth(x,T).
Given a clause set IV, we call a depth increasing clause C' € N uniquely depth increasing clause in N
for the predicate P at argument position i if there is no different depth increasing clause for the same
predicate P in N with depth increasing argument position j # 4.

In order to speak about recursive definitions of predicates or, alternatively, cycles between clauses,
we need to establish a notion of reachability between predicate symbols of atoms occurring in (possibly
different) clauses.

Definition 3.3 (Reachability). Given a clause set N, a predicate @ is reachable from P in one step
if there is a clause (T, P(3) — Q(f),A) € N. A predicate R is reachable from P if the predicate R
is reachable in one step from) and @ is reachable from P, or if R is reachable from P in one step.
Additionally, we say that R is reachable from a depth increasing clause (I' — Q(f),A) € N, with
depth increasing predicate @, if R is reachable from Q.

Consider the following set N as a motivating example for the below definition of watched argu-

ments:

(1) — P(f(a),b,c)

(2) P(z,y,2) — Qf(z),y,2)

B) Qz,y,2) — Pr,y,2)

(Hyper-)resolution on N computes infinitely many clauses of the form Q(f(a),b,c). The reason

is, in particular, the second clause, where the depth of the occurrence of z in the succedent (term f(z))
is strictly larger than its depth in the antecedent (term z). In order to exclude such a situation, we
“watch” the non-increasing arguments of Q(f(z),y, z), which are y, z (the second and third argument).
Due to the existing cycle between the second and third clause, we also watch the second and third
argument in the atoms with predicate symbol P. In the case of a depth increase comparing the
maximal term depth of the atoms on the right hand side and the maximal term depth occurring in
the atoms on the left hand side (as we have it for the second clause), we require for the second clause
that only variables from the watched arguments occur inside the depth growing terms. This means
for the example, that if only the variables y or z are arguments of the function f in the second clause,
the infinite nesting does not occur.

Definition 3.4 (Watched arguments). Let warg be a function from predicate symbols to sequences of
direct argument positions such that if warg(P) = [i1,...,4,] then 1 <i; <m, 0 <n <m, and i; < iy
for k < j where m is the arity of P. In case warg(P) = [i1,...,i,] then any i, is called a watched
argument of P. The function warg is extended to atoms by:

warg(P(tl,...,tm)) = [P(tla--~7tm)‘i1>-~~’P(tla~~~atm)‘in] .

Definition 3.5 (Origination). Let N be a set of clauses. Origination is defined inductively by:
(i) For all input clauses C' € N their literals L € C originates from C.

48 Manuel Lamotte-Schubert and Christoph Weidenbach

(ii) For all hyper-resolution derived clauses — Ao, Aq,...,A,, from parent clauses
C = Ql(sl,la sy sl,ml)v ey Qn(sn,la ey Sn,mn) — Aa D’L = Qi(ui,la e »ui,mi)v Ai?

the literals Lo € Ao originate from the clause C, and each L'c € A; originates from the clause
D;.

Definition 3.6 (BDI-1). Let N be a set of clauses and warg a watched argument function. A clause
C=T—=Pi(t11,--rtin)s---s Pntm,1s- - s tmon,,) A from N with 1 <4 < m satisfies BDI-1 if C is
depth increasing, and

(1) vars({Pr(t1,1,---yt1ny)s-- s Pm(tma,-- - stmon,,), AF) € vars(T"), and
depth(z, A) < depth(x,T') for all z € vars(A)

(ii) for all C" = Pi(s1,...,8),I" = A’ € N where P;(s1,...,80)0 = Pi(ti1,...,tin,)o for some
unifier o, the atoms P;(s1,...,sy,) and P;(¢;1,...,t;n,) are similar, and for all depth increasing
variables x, positions p, variables y, argument positions j where ¢, ;|, = =, s;|, = y with
y € (vars(P;(s1, ..., s,)) Novars(A’)) it holds depth(y, A’) =0

(iii) for all P;(¢;1,...,tin,) holds warg(P;(ti1, .- tin,)) =]

(iv) for all atoms Q(7%), Ri(¥;) € T where @, is reachable from a depth increasing clause in N and
R; is not reachable from a depth increasing clause holds

vars(P(ti1, .- tin,;)) C U vars(warg(Qx (7)) U U vars(Ry (1))
k]

(v) for all atoms Q(7) € T" holds
(warg(Q(7)) = [Jor for all R(¥) € A it holds warg(Q(7)) = warg(R(7)))

BDI-1-(ii) ensures that any derived atom from a clause satisfying BDI-1 with increased depth
(compared to its parent clauses) cannot further contribute to the growth in depth in the next hyper-
resolution step where the atom with the increased depth is considered as a parent clause. The R atoms
in the clause set in the introduction are an example.

BDI-1-(iv) prevents to have two consecutive depth increases in an argument when two consecu-
tive hyper-resolution inference steps with depth increasing clauses take place. The following example
assumes a hyper-resolution inference applied to a clause satisfying BDI-1 and the immediate previous
hyper-resolution was performed on a clause satisfying BDI-2. Consider the following clause set N for
this condition:

(1) P(z,y) — Q(f(9(y),v)
(2) - P(a, f(a))
(3) Qz,y) — R(f(z),x)
(4) R(f(z),z) — P(f(z),z)

Hyper-resolution between clause (1) satisfying BDI-2 and (2) yields a depth increased clause
— Q(f(9(f(a))), f(a)). Next, we can apply hyper-resolution on clause (3) satisfying BDI-1 and the
previously derived clause. According to the construction of BDI-2 (see below), the first (increased)
argument of the literal Q(f(g(y)),y) in clause (1) is not watched, but the second argument is, i.e.
warg(Q(f(g(v)),y)) = [y]. Consequently, the variable condition of BDI-1-(iv) permits only variables
in R(f(z),z) where z € vars(warg(Q(z,y)) because @ is reachable from a depth increasing clause.
However, the variable condition cannot be satisfied because the variable z ¢ warg(Q(f(g9(y)),y))-

BDI-1-(v) prevents position swapping of previously increased arguments in the non-depth in-
creasing arguments of a clause satisfying BDI-1. The idea is to require for any atom in the succedent
with a non-empty watched argument list that the watched argument list for all atoms in the antecedent
is either identical or empty.

Definition 3.7 (BDI-2). Let N be a set of clauses and warg a watched argument function. A clause
C=T—= P(t1,...,tj,...,tn), A from N satisfies BDI-2 if C is a uniquely depth increasing clause in
N for the predicate P at argument position j, and

(i) vars({P(t1,...,t5,...,tn), A}) C vars(T")

BDI: A New Decidable First-order Clause Class 49

(ii) for all i # j holds t; ¢ warg(P(t1,...,tn)) and t; € warg(P(t1,...,t,))
(iii) for all atoms Q(s1,...,8,) € I’ where @ is reachable from P and
vars(Q(s1, ..., 8n)) Nwars(P(t1, ..., t,)) # 0
(1) arity(Q) = arity(P)
(2) warg(@(s1, - 50)) = warg(Plts, .. tn)
(3) wars(s;) Nvars(P(ti,...,t,)) =0
(iv) for all clauses C' € N with C' =T" — A’ which have an atom whose predicate is reachable from
P, it holds for all atoms Q(7) € T" that

(warg(Q(7)) = [Jor for all R(¥) € A it holds warg(Q(F)) = warg(R(7)))

(v) for all atoms S(v1,...,v,) € A and Qg(7%), Ri(¥7) € T where Qf is reachable from a depth
increasing clause and R; is not reachable from a depth increasing clause holds

vars(S(vi,...,vm)) C U vars(warg(Qr (7)) U U vars(R;(07))
k 1

Please note that condition BDI-2-(iii) implies that the depth increasing atom has at least two
arguments. BDI-2-(iii) takes care of the depth inside the depth increasing atom of a clause satisfying
BDI-2. In a clause set N with recursive predicate definitions, this condition restricts the way of
increasing the depth in order to prohibit an unbounded growth of depth. BDI-2-(iv) prevents the
“transfer” of a term with increased depth in a literal to another literal inside a different clause.

BDI-2-(iv) and BDI-2-(v) guarantee that depth increasing cycles cannot be used several times
with the same depth increasing term, analogous to the corresponding conditions in BDI-1-(iv) and
BDI-1-(v).

Consider the following set of clauses:

(1) P(z,9),Q(z,y) — P(f(2),y)
(2) P(z,y) — Qz,y)
(3) — P(a,b)

In this example, the clause (1) does not satisfy BDI-1, nor BDI-2, nor PVD. It does not satisfy
PVD because it is depth increasing, nor does it satisfy BDI-1 because the occurrence of the atom
P(f(2),y) is not similar to P(z,y) occurring in clause (2) which is required by BDI-1-(ii). And
eventually, it also does not satisfy the conditions of BDI-2, because there is the atom Q(z,y), Q is
reachable from P but BDI-2-(iii)-(3) is violated. The clauses (2) and (3) satisfy PVD.

Definition 3.8 (BDZ). Let N be a set of clauses and warg a watched argument function. The set N
belongs to BDZ (bounded depth increasing) if for all C' € N:

(i) C satisfies PVD, or
(ii) C satisfies BDI-1, or
(iii) C satisfies BDI-2,

and, additionally, for two depth increasing clauses I' — P(t1,...,t,), A and IV — Q(¢1,...,t,,), A’
with depth increasing predicates P and @ satisfying BDI-2

(iv) the predicate @ is not reachable from P and vice versa.

In the context of a clause set N satisfying BDZ, we can relax condition BDI-2-(iv) to apply only
to clauses satisfying PVD. Please note that we can have clauses in IV which satisfy the conditions of
both BDI-1 and BDI-2.

50 Manuel Lamotte-Schubert and Christoph Weidenbach

Consider the following set of clauses as an example to demonstrate and discuss the different
syntactical conditions of the class BDZ:

(1) — P(f(a),h(a),a)

(2) P(z,y,2) — Qz,y, f(g9(x))), S(z,y)
(3) Qr,y, f(z)) — R(f(9(z)),z,h(y))

(4) R(f(9(x)),y,h(2)) — P(z,y,2)

(5) P(a,b,c) —

(6) P(z,y,2) — T(y,2)

(7) T(z,y) — R(x,y7g(z>)

A common requirement for all clauses is that the set of variables of the succedent of each clause is
a subset of the set of variables of the antecedent of the same clause. Clause (7) violates this condition
and is therefore not in BDZ. For the rest we only consider the clauses (1) to (6). The ground clauses
(1) and (5) trivially satisfy PVD, as well as clause (4). The clause (2) is depth increasing and satisfies
BDI-2: The variables occurring in atoms different than Q(z,y, f(g(z))) do not increase the term depth.
Further, the predicate P of the atom P(x,y,z) is reachable from @ through the clauses (2)-(3)-(4).
P has the same arity than @, the lists of watched arguments (i.e. all arguments except the depth
increasing argument) can be defined identical, and the variable z does not occur inside the third
argument of Q(x,y, f(g(z))) (BDI-2-(iii)). Clause (3) satisfies BDI-1 because the occurrence of the
atom R(f(g(z)),z,h(y)) in clause (3) is similar to the atom R(f(g(x)),y,h(z)) in clause (4) (BDI-1-
(ii)). Furthermore, the variable x whose depth has been increased in clause (3) occurs with depth 0
in the atom P(z,y, z) in the succedent of clause (4). In addition, the atom in the succedent of clause
(3) satisfies vars(R(f(g(x)),z, h(y))) C vars(warg(Q(x,y, f(2)))) (BDI-1-(iv)).

Note that checking membership of a clause set N in BDZ can be done in time at most quadratic
in the size of N. Membership in PVD can be checked in time linear in the size of N. While this
test depth increasing atoms according to BDI-1 or BDI-2 can already be identified. In time at most
quadratic in the size of N reachability between the predicates of those atoms and all other atoms can
be established. Once reachability is established BDI-1 can be decided in linear time in the size of N.
Note that for BDI-1 the watched arguments of the depth increasing predicate need to be set to the
empty set (BDI-1-(iii)) and the watched arguments of reachable predicates have to be set accordingly
(BDI-1-(iv) and BDI-1-(v)). Similarly, the BDI-2 conditions can be checked in linear time. All other
argument positions except for the depth increasing one need to be watched and conditions BDI-2-(iv)
and BDI-2-(v) can be established/checked in linear time once the reachable predicates are identified.
Finally, condition Definition 3.8-(iv) is also linearly checked on the basis of an established reachability
relation on the predicates.

4. Termination of Hyper-Resolution on D7

In order to decide BDZ, we use the hyper-resolution calculus. The aim is to show that any derivation
from a given finite BDZ clause set N terminates. It is well known that this is the case if the depth of
terms in clauses as well as the number of different variables in clauses can be finitely bound. For the
new class BDZ, hyper-resolution will only generate ground clauses, implying that for termination it
is sufficient to provide an overall depth bound.

Lemma 4.1. Any clause derived by a hyper-resolution inference from an initial clause set N satisfying
BDT is positive ground.

Proof. Follows from the variable condition vars(A) C wars(I') that holds for all clauses vars(A) C
vars(T") satisfying BDZ. O

Because Factoring is applied only to positive clauses, and positive clauses derived by hyper-
resolution inferences are always ground as stated in Lemma 4.1, the application of the factoring
rule corresponds to condensation which amounts to the elimination of duplicate literals. So for BDZ

BDI: A New Decidable First-order Clause Class 51

actually no factoring rule is needed for completeness. We still need to have a bound on the term depth
of any derived clause.

Theorem 4.2. Let N be a finite set of BDZ clauses and dy = 2 - max{depth(A) |T' = A € N}. Then
the term depth of any clause C' derived by the hyper-resolution calculus from NV is smaller than d.

Proof (Outline). The proof is by induction of the length of a hyper-resolution derivation. The induction
invariant implying the above statement is: for any clause C
(i) depth(C) < dy
(i) for all atoms P(t1,...,t,) € C with depth(P(t1,...,tn)) > %\’ holds:
(iia) warg(P(t1,...,tn)) #], P(f) is reachable from a depth increasing clause satisfying BDI-2,
and for all arguments ¢, € warg(P(t)) holds that depth(t,) < %, or
(iib) warg(P(t1,...,t,)) = []| and P(t1,...,t,) originates (and A is therefore also reachable)
from a depth increasing clause satisfying BDI-1.

O

5. From Hyper to Ordered Resolution

Hyper-resolution enumerates all ground facts from a given clause set. For many practical applications
this is not feasible. For example, in the context of our authorization analysis, thousands of autho-
rization definitions for a large number of users need to me modeled. They imply a huge number of
derivable ground facts representing the exact authorization instantiations for all these users. There-
fore, we want to employ a specific selection strategy on atoms in order to avoid the naive enumeration
of all derivable positive ground clauses. Consider the following abstract, but real world, set of clauses
as an example to sketch the idea. Assume 10000 ground atoms — A(a;,b;) relating authorizations
a; to possible values b;. Assume 10000 ground atoms of the form — Holds(u;,a;) that assign au-
thorizations a; to users w;. Then already a clause of the form Holds(z,y), A(y,z) — Access(x,z)
results already in a potential quadratic (10k*10k) number of concrete access rights. However, in
some business process, these rights are only needed in a very specific way, e.g., a clause of the form
P(z,y,z), Access(x1,x), Access(x1,y), Access(x1,z) — Q(z1,y,2) requires three specific rights in
order to derive Q(z1,y,z) . If we can first select P(x,y, z) in this clause, then the overhead of gener-
ating all access rights for all users in order to reason about Q(z1,y,z) can be prevented. Therefore,
we want to turn ordered resolution with selection into a decision procedure for BDZ.

In general, ordered resolution is not a decision procedure for BDZ. However, as we will shoe below,
the BDZ class justifies two additional reduction rules that then make ordered resolution terminate.

Theorem 5.1. Let N be an unsatisfiable clause set of the class BDZ and dy = 2 - max{depth(A) |
(' = A) € N}. Consider a hyper-resolution proof of the empty clause with ordering . Then there
is a (non-ground) ordered resolution proof of the empty clause with respect to > and an arbitrary
selection strategy such that depth(C) < dy for all clauses C' derived in this ordered resolution proof.

Proof. By Theorem 4.2 there is a hyper-resolution proof of the empty clause where any generated
clause does not exceed the depth bound dy. Having a hyper-resolution proof for NV with depth bound
dn, we can construct an inconsistent subset S of N and ground it by some constant such that all
ground clauses still have depth bound dy. By refutational completeness of the ordered resolution
calculus with selection, we can derive the empty clause from S. Because all inferences are ground
in the refutation of S, any derived ground clause respects the depth bound dpy. Using the standard
lifting lemma, we can construct a non-ground refutation of the original set N where it still holds
depth(C) < dy for all clauses C derived by the ordered resolution calculus with an arbitrary selection
strategy. (|

We exploit Theorem 5.1 by the following two paramterized reduction rules that eventually enable
a finite saturation of a BDZ clause set via ordered resolution with selection.

52 Manuel Lamotte-Schubert and Christoph Weidenbach

Definition 5.2 (Variable Condensation(k)). The reduction

C
Coi,...,Co1y

where vars(C) = {z1,...,x1}, ! > kand 0, ; = {a; — x;} for all4,j with 1 <i < [,i < j <[, is called
Variable Condensation.

Definition 5.3 (Depth Cutoff(k)). The reduction
C

where depth(C) > k is called Depth Cutoff.

Theorem 5.4. Let N be a finite set of clauses satisfying BDZ and ¥’ be the signature symbols occurring
in N. Then the ordered resolution calculus with an arbitrary selection strategy together with Depth
Cutoff (dn) and Variable Condensation(en) where dy = 2 - max{depth(A¢) | C € N} and ey = |{t |
t € T(X'), depth(t) < dn}| is complete and terminating.

Proof. Tt follows from Theorem 5.1 that the standard ordered resolution calculus with an arbitrary
selection strategy is able to derive the empty clause and none of the derived clauses in the ordered
resolution proof exceeds the depth of dy. Thus, if we have a clause D with depth(D) > dy, we apply
Depth Cutoff (dn) on D and discard it as it will not be required to refute N in case of a contradiction.

Additionally, with respect to the finitely many signature symbols in N and the depth limit dy
only ey many different ground terms need to be considered in any proof. Therefore, we can apply
Variable Condensation(ey) on any (derived) clause D such that the total number of different variables
in any derived clause is bounded as well. ([

6. Conclusion and Future Work

In order to emphasize the thin line between decidability and undecidability on our new class definition,
we present two examples each violating only one of the conditions of BDZ, and show, that it is possible
to encode the Post Correspondence Problem, PCP [14] using the relaxed conditions. For the PCP
consider words over an alphabet {0,1}. We construct a clause set such that an instance of the PCP
problem has a solution if and only if the clause set is unsatisfiable. We encode words over ’0’, 1’ by
using terms built from the constant a and the monadic function symbols fy, f1. For example, the word
110 is represented as f1(f1(fo(a))). The corresponding string s for a term is denoted as fs(x). For a

PCP instance ((u1,v1), (u2,v2), ..., (Um,vm)), the overall clause set representing the PCP encoding
is:

= P(fui(a), fo.(a)) 1<i<m (1.1)

P(z,y) = P(fu,(z), fo,(y)) 1<i<m (1.2)

P(z,z) — (1.3)

The clauses of the form (1.1) represent the start state for m words and clauses (1.2) the recursion
to construct larger words. Eventually, clause (1.3) neglects the existence of a common word.

Consider the below clause set of Example 6.1. The clauses (2.1) and (2.4) both satisfy condition
PVYD while the clauses (2.2) and (2.3) both satisfy BDI-2. In contrast to the standard formalization of
the PCP problem, the extension of words (original clause (1.2)) is now spread over two clauses ((2.2)
and (2.3)). However, these clauses in combination do not satisfy BDZ-(iv), because the predicate P
is reachable from @; (and vice versa).

BDI: A New Decidable First-order Clause Class 53

Example 6.1.

= P(fu;(a), foi(a)) 1T<i<m (2.1)
Plz,y) = Qi(fu,(z)y) 1<i<m (2.2)
Qi(z,y) — Pla, fu,(y)) 1<i<m (2.3)
P(z,z) — (2.4)

So dropping the reachability condition of BDZ leads to an undecidable clause class.

Consider the below clause set of Example 6.2. Here, we have used the same idea as in Example 6.1,
namely, to distribute the extension of words over several clauses (3.2)-(3.5). The clauses (3.1) and (3.6)
satisfy PVD while the remaining clauses are candidates to satisfy BDI-1. Starting from the clauses
(3.2), the atoms with @;, R;-predicates occurring in (3.3)-(3.5) are all similar, respectively. However,
the variable condition of BDI-1-(iv) is violated in (3.3) and (3.4). Consider one of the clauses resulting
from (3.3) as an example: The atom Q;(fu, (z),y) is reachable from a critical clause (a clause resulting
from (3.2)), vars(warg(Q;(fu,(z),y))) = @ and there are no other atoms that are not reachable from a
critical clause on the left hand side. Consequently, the right hand side of the clause had to be ground
to satisfy condition BDI-1-(iv).

Example 6.2.

- P(fu,(a), fo,(@)) 1<i<m (3.1)

P(z,y) = Qi(fu,(®),y), Ri(z, fo,(y)) 1<i<m (3:2)

Qi(fu;(2),y) — Ri(z, fo,(y)) 1<i<m (3.3)

Ri(z, fo,(y)) — Qi(fu,(2),y) 1<i<m (3.4)

Qi(fu (2),y), Ri(z, fo,(y)) — P(fu,(z), fo,(y)) 1<i<m (3.5)
P(z,z) — (3.6)

So dropping condition BDI-1-(iv) leads to an undecidable clause class.

In general, any violation of the conditions of BDI-1 or BDI-2 results in a clause class where
hyper-resolution is no longer a decision procedure. The above two clause sets show that at least
two of the conditions are mandatory in order to obtain a decidable clause class. As part of future
work, we will investigate whether some conditions can be relaxed by appropriate refinements of the
(hyper-)resolution calculus.

We have presented a new decidable clause class BDZ. It is motivated by our authorization analysis
experiments. As hyper-resolution terminates on BDZ it enjoys the finite model property. In addition,
we showed that even any ordered resolution calculus with selection cutting off clauses with terms
exceeding some a priori bound and variable condensing clauses exceeding a certain limit of different
variables, decides the class. The this way extended ordered-resolution calculus can in fact efficiently
decide properties for large BDZ clause sets generated out of authorization structures.

There are ways to extend the BDZ class or derive new decidable classes from it. An obvious
modification would be to turn the variable conditions from succedent to antecedent and adopt the
resolution strategy accordingly. Furthermore, it is possible to extend condition BDI-2 to several depth
growing argument positions.

References

[1] Alessandro Armando, Maria Paola Bonacina, Silvio Ranise, and Stephan Schulz. New results on rewrite-
based satisfiability procedures. ACM Transactions on Computational Logic, 10(1):4:1-4:51, 2009.
[2] Leo Bachmair and Harald Ganzinger. Resolution theorem proving. In John Alan Robinson and Andrei

Voronkov, editors, Handbook of Automated Reasoning, volume 1, chapter 2, pages 19-99. Elsevier and
MIT Press, 2001.

54 Manuel Lamotte-Schubert and Christoph Weidenbach

[3] Leo Bachmair, Harald Ganzinger, and Uwe Waldmann. Superposition with simplification as a decision
procedure for the monadic class with equality. In Georg Gottlob, Alexander Leitsch, and Daniele Mundici,
editors, Computational Logic and Proof Theory, Third Kurt Gédel Colloguium, volume 713 of LNCS, pages
83-96. Springer, August 1993.

[4] Egon Borger, Erich Grédel, and Yuri Gurevich. The classical decision problem. Perspectives in mathe-
matical logic. Springer, 1996.

[5] C. Fermuller, T. Tammet, N. Zamov, and Alexander Leitsch. Resolution Methods for the Decision Problem.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1993.

[6] Christian G. Fermiiller, Alexander Leitsch, Ullrich Hustadt, and Tanel Tamet. Resolution decision pro-
cedures. In Alan Robinson and Andrei Voronkov, editors, Handbook of Automated Reasomning, volume II,
chapter 25, pages 1791-1849. Elsevier, 2001.

[7] Lilia Georgieva, Ullrich Hustadt, and Renate A. Schmidt. Hyperresolution for guarded formulae. J. Sym-
bolic Computat, 36:2003, 2000.

[8] Lilia Georgieva, Ullrich Hustadt, and RenateA. Schmidt. A new clausal class decidable by hyperresolution.
In Andrei Voronkov, editor, Automated DeductionCADE-18, volume 2392 of Lecture Notes in Computer
Science, pages 260-274. Springer Berlin Heidelberg, 2002.

[9] Ullrich Hustadt, Renate A. Schmidt, and Lilia Georgieva. A survey of decidable first-order fragments and
description logics. Journal of Relational Methods in Computer Science, 1:251-276, 2004.

[10] Florent Jacquemard, Michaél Rusinowitch, and Laurent Vigneron. Tree automata with equality con-
straints modulo equational theories. In Automated Reasoning, Third International Joint Conference, IJ-
CAR 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings, volume 4130 of Lecture Notes in Computer
Science, pages 557-571. Springer, 2006.

[11] Manuel Lamotte-Schubert and Christoph Weidenbach. Analysis of authorizations in SAP R/3. In Nicolas
Peltier and Viorica Sofronie-Stokkermans, editors, F'TP 2009 : First-Order Theorem Proving, volume 556
of CEUR Workshop Proceedings, pages 90-104, Oslo, Norway, July 2009. CEUR.

[12] Carsten Lutz, Ulrike Sattler, and Stephan Tobies. A suggestion for an n-ary description logic. In Descrip-
tion Logics, 1999.

[13] Hans De Nivelle. Resolution decides the guarded fragment., 1998. ILLC report CT-98-01, University of
Amsterdam, The Netherlands.

[14] Emil L. Post. A variant of a recursively unsolvable problem. J. Symbolic Logic, 12(2):255-56, 1946.

[15] Christoph Weidenbach. Towards an automatic analysis of security protocols in first-order logic. In Harald
Ganzinger, editor, 16th International Conference on Automated Deduction, CADE-16, volume 1632 of
LNAI pages 314-328. Springer, 1999.

[16] Christoph Weidenbach. Combining superposition, sorts and splitting. In Alan Robinson and Andrei
Voronkov, editors, Handbook of Automated Reasoning, volume 2, chapter 27, pages 1965-2012. Elsevier,
2001.

Manuel Lamotte-Schubert

Max Planck Institute for Informatics
Campus E1 4

D-66123 Saarbriicken, Germany
e-mail: lamotte@mpi-inf .mpg.de

Christoph Weidenbach

Max Planck Institute for Informatics
Campus E1 4

D-66123 Saarbriicken, Germany
e-mail: weidenbach@mpi-inf .mpg.de

