Variable and Clause Elimination for LTL Satisfiability
Checking

Martin Suda

Abstract. We study preprocessing techniques for clause normal forms of LTL formulas. Applying
the mechanism of labeled clauses enables us to reinterpret LTL satisfiability as a set of purely
propositional problems and thus to transfer simplification ideas from SAT to LTL. We demonstrate
this by adapting variable and clause elimination, a very effective preprocessing technique used
by modern SAT solvers. Our experiments confirm that even in the temporal setting substantial
reductions in formula size and subsequent decrease of solver runtime can be achieved.

1. Introduction

Linear temporal logic (LTL) is a modal logic with modalities referring to time [13]. Traditionally,
it finds its use in formal verification of reactive systems where it serves as a specification language
for expressing the system’s desired behavior. The specifications are subsequently checked against a
model of the system during the process of model checking [3]. More recently, the importance of LTL
satisfiability checking is becoming recognized [14, 16], where the task is to decide whether a given LTL
formula has a model at all. This is, for instance, essential for assuring quality of formal specifications
[12]. Satisfiability checking of LTL is a computationally difficult task, in fact a PSPACE-complete one
[17], and thus techniques for improving solving methods are of practical importance.

One possibility for speeding up the checking lies in simplifying the input formula before the
actual decision method is started. In the context of resolution-based methods for LTL satisfiability
[8, 18], on which we focus here, formulas are first translated into a clause normal form. Simplification
then means reducing the number of clauses and variables while preserving satisfiability of the formula.
Such a preprocessing step may have a significant positive impact on the subsequent running time.

In this paper we take inspiration from the SAT community where a technique called variable and
clause elimination [5] has been shown to be particularly effective. It combines exhaustive application
of the resolution rule over selected variables with subsumption and other reductions. Our main con-
tribution lies in showing that variable and clause elimination can be adapted from SAT to the setting
of LTL. This is quite non-trivial, because LTL normal forms consist of temporal clauses, which are
bound to specific temporal contexts and so their interactions in inferences and reductions need to be
carefully controlled.

A general method for reducing LTL satisfiability to the purely propositional setting has been
introduced in [18]. There, the existence of a model of an LTL formula is shown to be equivalent to
satisfiability of one of infinitely many potentially infinite standard clause sets. These are, however,
finitely represented with the help of labels, which allows for an effective transfer of resolution-based
reasoning techniques from propositional logic to LTL. In this paper, we extend the ideas of [18] to
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adapt variable and clause elimination. An additional label component is needed to justify elimination
in its general form, but we prove it can be dispensed with after the elimination process.

Our exposition starts in Sect. 2, where we describe our version of clause normal form of LTL
formulas, which we call Temporal Satisfiability Task (T'ST). TSTs are a particular refinement of the
Separated Normal Form [7], which can be seen as concise descriptions of Biichi automata. This observa-
tion, which is of independent interest, represents another contribution of this paper. The mechanism
of labeled clauses itself is introduced in Sect. 3 and utilized for variable and clause elimination in
Sect. 4. Practical potential of our method is demonstrated in Sect. 5, where we describe the effect of
the simplification on runtimes of two resolution-based LTL provers over an extensive set of bench-
mark problems. In Sect. 6 we follow the connection to Biichi automata to discuss related work, and
we conclude in Sect. 7 by mentioning possibilities for future work.

2. Preliminaries

We assume the reader is familiar with propositional logic and the syntax and semantics of LTL.! LTL
formulas are built over a given signature ¥ = {p, q,r, ...} of propositional variables using propositional
connectives =, A, V, ..., and temporal operators (),, 0, U, ... Propositional clauses, denoted C, D,
possibly with subscripts, are sets of literals understood as disjunctions. A propositional valuation is
a mapping W : ¥ — {0,1}. We write W = C' if a valuation W propositionally satisfies a clause C.
An interpretation of an LTL formula is an infinite sequence of valuations (W;);cn, in this context also
referred to as states.

In order to talk about two neighboring states at once we introduce a disjoint copy of the basic
signature ¥’ = {p’, ¢’,r’,...}. Given a clause C over X, we write C’ to denote its obvious counterpart
over X/, For a valuation W over X let W’ denote the valuation over ¥’ that behaves on primed symbols
in the same way as W does on non-primed ones. We therefore have W = C if and only if W' = C’
for any such W and C. If W; and W3 are two valuations over X, we let [Wy, W3] denote the joined
valuation Wy U (W3)" : X UX" — {0, 1}. Such a valuation is needed to evaluate clauses over the joined
signature X U X',

Most resolution-based approaches to satisfiability checking first translate the input formula into
a certain normal form. In the context of LTL, the Separated Normal Form (SNF) developed by Fisher
[7] has proven to be very useful. It is obtained from an LTL formula by applying transformations
that 1) introduce new variables as names for complex subformulas, 2) remove temporal operators by
expanding their fixpoint definitions, 3) apply classical rewrite operations to obtain a result which is
clausal, i.e. represented by a top-level conjunction of certain temporal clauses, which are disjunctive
in nature. The whole transformation preserves satisfiability of the input formula and it is ensured that
the result does not grow in size by more than a linear factor [8].2

In this paper we use a particular refinement of SNF which we call Temporal Satisfiability Task
(TST).? To obtain a TST, a general SNF is first normalized further by using the ideas of [4]. In
particular, we transform the so called conditional eventuality clauses to unconditional ones and then
reduce the potentially multiple (unconditional) eventuality clauses to just one eventuality clause.*
Finally, to obtain a compact representation, we explicitly sort the clauses into three categories, strip
them off the temporal operators and write them down using standard propositional clauses and the
priming notation. Even after these refinements the result is linearly bounded in size and equisatisfiable
with respect to the original formula.

Definition 1. A TST is a quadruple 7 = (X, I, T, G) such that

e Y is a finite propositional signature,
e [ is a set of initial clauses C; over the signature 3,

1See Appendix A for a short overview.

2A streamlined version of the transformation can be found in Appendix B.
30ur previous work [18, 20] uses the term “LTL-specification” for this concept.
4A recapitulation of these refinements has been moved to Appendix C.
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e T is a set of step clauses Cy V (D;)’ over the joined signature ¥ U X/,
e G is a set of goal clauses C, over the signature 3.

The initial and step clauses are directly translated from SNF'. The goal clauses all together express
the single eventuality obtained in the previous step. This generalization (from a single goal clause)
is for free and appears to make the definition conceptually cleaner. Intuitively, a TST stands for the

LTL formula
(AC:) AB(ACvOD))AD0 (AC)

which directly translates to the following formal definition.

Definition 2. An interpretation (W;);ecn is a model of T = (3,1, T, G) if

1. for every C; € I, Wy = C,
2. for every i € N and every Cy V (D) € T, [W;,Wit1] E Cy V (Dy), and
3. there are infinitely many indexes j such that for every C, € G, W; = C,.

A TST T is satisfiable if it has a model.

Remark 3. We close this section with an interesting observation relating our approach to LTL satisfi-
ability to explicit methods based on automata. It is well known (see e.g. [9]) that for any LTL formula
¢ there is a Biichi automaton A, recognizing models of ¢, i.e. an automaton that accepts exactly
those valuations (W;);en that are models of ¢. The size of such an automaton, i.e. the number of its
states, is bounded by 2/#!, where || denotes the size of the formula.

Now we can easily interpret a TST T as a symbolic description of such an automaton. The
states of the automaton are formed by the set Q = 2%, i.e. the set of all valuations over ¥, its
transition function 6 = {(Wy, Wa) | W1, Wa] = A(C: V (D:)')} contains those pairs of valuations
that satisfy the step clauses, and its initial and accepting sets are defined as Q; = {W | W = A C;}
and Qp = {W | W |= A\ C,}, respectively. It is easy to check that the models of 7 are exactly the
accepting runs of this automaton.

This way one can view the transformations from an LTL formula to SNF and further to a TST
as an alternative way of obtaining a Biichi automaton for the formula. Interestingly, it is only the last
step, when the automaton is made explicit, that incurs the inherent exponential blowup.

3. Mechanism of labeled clauses

The purpose of this section is to show that the task of LTL satisfiability can be reduced to a set of
purely propositional SAT problems. This provides a means for transferring the well-known resolution-
based reasoning techniques from the propositional level to that of LTL. In particular, it will in Sect. 4
allow us to transfer variable and clause elimination. The reduction from LTL that we present leaves us
with infinitely many propositional problems over an infinite signature. Labels are then used to finitely
represent and control clauses within these problems, abbreviating entire clause sets.

Assume we have a TST T = (X,I,7,G) and want to decide satisfiability of the formula it
represents. It is a known fact that when considering satisfiability of LTL formulas attention can
be restricted to ultimately periodic [17] interpretations. These start with a finite sequence of states
and then repeat another finite sequence of states forever. This observation, which is one of the key
ingredients of our approach, motivates the following definition.

Definition 4. Let K € N, and L € N* = N\ {0} be given. An interpretation (W;);ey is a (K, L)-model
of T = (,1,T,G) if

1. for every C € I, Wy = C,

2. for every i € N and every C € T, [W;,W;11] E C,

3. for every i € N and every C € G, Wig4,.1) = C.
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FIGURE 1. Schematic presentation of the potentially infinite set of clauses that is
satisfiable if and only if a TST T = (X,I,T,G) has a (K, L)-model with K = 2 and
L = 3. The axis represents the infinite signature >*, while the gray bars stand for
individual copies of the initial, step, and goal clauses, respectively.

Satisfiability within a (K, L)-model for some values of K and L corresponds to the original
semantics except that the condition on the goal clauses to be satisfied in infinitely many states is
now controlled and we require that these states form an arithmetic progression with K as the initial
term and L the common difference. Please consult [19] for a detailed proof of why focusing only on
(K, L)-models does not change the notion of satisfiability.

For a particular choice of K and L, the existence of a (K, L)-model can be stated as an infinite
but purely propositional problem over the infinite signature ¥* = J;cy Y. Here we extend the
convention about priming and allow it to be applied more than once. Thus along with signatures
¥ and ¥ we also have ¥/, %" ... (also written (2 X3) ) as other disjoint copies of the basic
signature implicitly meant to represent states further in the future. Now the purely propositional
problem simply restates the definition of a (K, L)-model in the form of clauses over ¥*, making use
of the natural bijection between propositional valuations over ¥* and interpretations.® It consists of:

e the set of initial clauses I = {C®) | C € I},
e together with {C® | C € T,i € N},
e and with {CK+"L) | C € G,i € N},

where the symbol C(¥) means that each literal in C' is being “moved i signatures forward”. Thus, e.g.,
for a clause C' = pV ¢’ over YUY/ we denote by C'? the clause p v ¢ over X UL ). See Figure 1
for an illustration of the situation.

We have now reduced LTL satisfiability of a TST T to infinitely many (for every pair of K and L)
infinite propositional problems over ¥*. We proceed by assigning labels to the clauses of T such that a
labeled clause represents up to infinitely many standard clauses over ¥*. Then an inference performed
between labeled clauses corresponds to infinitely many inferences on the level of ¥*. This is similar
to the idea of “lifting” from first-order theorem proving where clauses with variables represent up to
infinitely many ground instances. Here, however, we deal with the additional dimension of performing
infinitely many reasoning tasks on the “ground level” in parallel, one for each pair (K, L).

Definition 5. A label is a triple (b, k,1) € {*,0} x ({*} UN) x N. A labeled clause C is a pair (b, k1) ||C
consisting of a label and a standard clause over ¥*.

Semantics of labels is given via a map to certain sets of time indexes.
Definition 6. Let K € N and L € NT be given. We define a set R, (b, k,1) of indexes represented
by the label (b, k,1) as the set of all ¢ € N such that

1. b# % —>t =0 and
2.k#x—>3dseN.t+k=K+s-L and
3. L divides .

5Given W* : ©* — {0,1}, the corresponding interpretation (W;);eny : N x £ — {0,1} is defined by the equation
Wi (p) = W*(p®) for every i € N and every p € X.
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Now a standard clause of the form C*) is said to be represented by the labeled clause (b, k,1)||C in
(K, L) ift € R(K,L)(ba k, l)

The three label components stand for three independent conditions on the time indexes to which
the clause relates. The first label component b relates the clause to the beginning of time, and the
second component relates the clause to the indexes of the form K + i - L, where the goal should be
satisfied. In both cases, * stands for a “don’t care” value, so if b or k equals *, the respective condition
is trivially satisfied by any index. The same effect is achieved for the third condition when [ = 0,
because every positive integer divides 0.

New label values are computed from old ones using certain operations when labeled clauses
interact in inferences, as will be detailed shortly. When, initially, a labeled clause set is constructed
from a TST (see Definition 7 below) three particular label values are used. Further values arise as
results of applying the mentioned operations, and the full generality of labels reflects an entire “closure”
of the three initial values under these operations.

Definition 7. Given a TST T = (3,1, T, G), the initial labeled clause set N for T is defined to contain

e labeled clauses of the form (0,x,0) || C for every C € I,
e labeled clauses of the form (x,x,0) || C for every C' € T, and
e labeled clauses of the form (x,0,0) || C for every C € G.

For any particular choice of K and L the standard clauses over ¥* represented by the labeled
clauses from the initial labeled clause set N4 form the purely propositional problem that encodes the
existence of a (K, L)-model of T.

Ezample. Let us assume that a TST T contains a goal clause (aV b) € G. In the initial labeled clause
set Ng this goal clause becomes (*,0,0) || aVb. If we now, for example, fix K = 2 and L = 3 as in Fig. 1,
our labeled clause will represent all the standard clauses (aVb)® with t € Ry 3)(*,0,0) = {2,5,8,...}.

The ultimate goal of this section is to “lift” the classical resolution inference rule to labeled
clauses. When two labeled clauses resolve with each other, a merge operation is applied to their labels
to produce the label of the resolvent. The idea is that the labeled resolvent represents exactly those
standard clauses that are resolvents of all the possible indicated resolution inferences between standard
clauses represented by the labeled premises.

Definition 8 (Labeled resolution).

(bl,k’l,ll)HA\/C (bg,kg,lg)”ﬁA\/D (1)
b,k D]]CV D '
The two labeled clauses above the line are the inference’s premises. A is an atom, C and D are standard
clauses over ¥*, and the label (b, k,1) is the merge of (b1, k1,11) and (bs, ka,l2) defined imperatively
as follows:
e if by = % then b := by else if by = % then b := by else b := 0,
o if ky = x then k := ko else if ko = * then k := ky else k := min(kq, ks),
o if k1 =% or ko = x then [ := ged(ly, 1) else | := ged(ly, lo, k1 — ka),

where ged stands for the greatest common divisor operation and ged(0,0) = 0.

It is straightforward to verify that for every (K, L) the merge operation captures the intersection
of the sets of indexes represented by its operands and thus the resulting label represents all the time
indexes where standard clauses represented by the inference’s premises interact to produce a resolvent.

Ezample. Merge of (*,2,0) and (%,5,0) is (*,2,3); we compute the minimum of the & components,
and the greatest common divisor of their difference and the original I components. Merge of (x,2,3)
and (x,2,3) is (x,2,3); merge is, in fact, idempotent. Merge of (x,2,3) and (x,x,0) is (x,2, 3); merge
has, in fact, a neutral element (x,*,0). Merge of (x,2,3) and (0,1,4) is (0,1, 1).
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Not all the resolution inferences from the “ground level” of ¥* are directly visible to the la-
beled resolution inference (1) above. To obtain a complete correspondence, labeled resolution must,
in general, be preceded by applying the following time shift operation to one of the premises, so that
the atom A and its matching partner —=A from the “ground level” become represented by matching
counterparts in labeled clauses:

(e D[ O~ (5,5, D (O (2)
(4,5, 0) | €~ (5, K+ 1,0) || (C) (3)

Soundness of time shift is the statement that all the standard clauses represented by the right hand
side of (2) and (3) are also represented by the respective left hand sides in any (K, L). Note that the
operation is undefined for labeled clauses with the first component b = 0, because these only represent
standard clauses fixed to the first time index.

Ezample. Let two labeled clauses (x,0,0) || ~pV ¢ and (*,0,0) || V p’ be given. They cannot directly
participate in a labeled resolution inference, although in (K, L) = (0, 1) there are (for every t) standard
clauses —=p+1) v ¢+ and () v p(t+1) represented, respectively, by the two labeled clauses, which
resolve on p(!*1). When the first labeled clause is shifted to (%,1,0) || =p’ V ¢, the clauses resolve on
p’ and a labeled resolvent (x,0,1) |7V ¢’ is obtained.

4. Elimination

By variable and clause elimination we understand the preprocessing technique described in [5] for
simplifying propositional SAT problems. It consists of a combination of a controlled version of variable
elimination and subsumption® reduction for removing clauses, as described below. These two are
alternated in a saturation loop until no further immediate improvement is possible. This section
describes how the mechanism of labeled clauses can be used to adapt variable and clause elimination
to the context of LTL.

Propositional variable elimination relies on erhaustive application of the resolution inference
rule. Given (standard) clauses C = p VvV Cy and D = —p V Dy, their standard resolvent C ® D is
Coy V Dy. Now, given a propositional problem in CNF consisting of a set of clauses N and a variable
p, one separates IV into three disjoint subsets N = N, U N-, U Ny of clauses. The first set, N,, is
a set of clauses containing the variable p positively, the clauses from V-, contain p negatively, and
Ny is a set of clauses without variable p. A new clause set N is obtained as (N, ® N-p,) U Ny, where
N,®N_, ={C®D | C € N,,D € N_,}. The set N no longer contains the variable p and is satisfiable
if and only if N is.

The obtained set N may contain tautological clauses’, which are redundant and should be
removed. Then the sizes of N and N are compared. In general, eliminating a single variable may incur
a quadratic blowup. An elimination step is only considered an improvement and should be committed
to when the size of N is not greater than that of N (possibly up to an additive constant). It is shown
in [5] that improvement eliminations occur often in practice and that they can be used to simplify the
input formula considerably.

Let us now turn to eliminating variables from TSTs. We know that TSTs naturally correspond
to sets of labeled clauses and these in turn represent propositional problems (albeit, in general, infinite
ones) from which variables can be eliminated by the standard procedure described above. There is
still a complication, however, because a single variable p € ¥ from the TST corresponds to all its
“instances” p,p’, p?, ... on the “ground level” of the signature *. To be able to represent the result
after elimination, all these instances need to be eliminated from the ground level uniformly, in one
step. This seems to be a difficult task when the TST contains a clause that mentions the variable p in

6 A standard clause C subsumes a clause D, if C’s literals are a subset of D’s literals. Subsumed clauses are redundant
and can be discarded.
7A tautological clause contains both a variable and its negation.
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two different time contexts, like, for example, in —p V ¢ V p’. In this case the individual eliminations
cannot be done independently from each other and we rule the case out from further considerations.

Remark 9. There are some interesting subcases where eliminating such a variable would, in theory,
be possible and would yield useful results. Consider the SNF containing p, O(—p V p), O(-p V 1),
from which p can be “semantically”eliminated and one obtains [Jr. On the other hand, eliminating p
from the SNF containing p, O(—p Vv —p’), O(p V p'), O(=p V a) should give us a formula whose models
(W)ien satisfy the condition (i mod 2 = 0 = W, | a), which is a property known [21] not to be
expressible by an LTL formula over the single variable a.

Let us now, therefore, assume that we are given a set of labeled clauses IV, perhaps an initial
labeled clause set for a TST 7, and a variable p € ¥ such that no clause in N contains more than one
possibly primed occurrence of p. We separate N into N, U N-, U Ny, a subset containing p positively
(possibly primed), a subset containing p negatively (possibly primed), and a subset not containing p
at all. A new set of labeled clauses N is constructed as (N, ® N_,) U Np. This time N, ® N_, stands
for the set of all the results of performing labeled resolution inference (1) on pairs of clauses from N,
and N_,, respectively, which may include shifting one of the premises in time using the rules (2) or

(3)-

Ezample. Let us assume that a set N contains the following labeled clauses

(0,%0)[[pVgVr, (4)
(0,%,0) | =p V =, (5)
(%,%,0) || 7V =p/, (6)
(*,0,0)[[-p Vg, (7)

and these are the only labeled clauses of N mentioning variable p. Then eliminating p from N means
removing the above labeled clauses and replacing them by all the possible labeled resolvents over p.
Notice that, actually,

e the tautology (4) ® (5) = (0,%,0) || ¢ V rV —r is immediately dropped,

e and (4) ® (6) is undefined, because temporal shift does not apply to (4).
Thus the above four clauses are replaced in N by the only nontrivial resolvent (4)®(7) = (0,0,0) || ¢Vr.

To formulate soundness theorems in this section we need a satisfiability notion for labeled clauses.
We extend the definition of a (K, L)-model, relying on the correspondence between valuations over
¥* and interpretations (see Sect. 3).

Definition 10. Let Ny ) = {C® | (b,k,1)||C € N & t € R1)(b, k,1)} denote the set of standard
clauses represented in (K, L) by the labeled clauses from N. A set of labeled clauses N is called
(K, L)-satisfiable if there is a valuation W* : ¥* — {0,1} which (propositionally) satisfies N(x, ).
The set N is called satisfiable if it is (K, L)-satisfiable for some K € N and I € N*.

Soundness of variable elimination for labeled clauses now reads.

Theorem 11. Let N and N = (N, ® N-,,) U Ny be sets of labeled clauses as described above. Then N
is (K, L)-satisfiable if and only if N is.

Apart from the previously explained limitation, there is another restriction on practical variable
elimination. Consider a clause set consisting of two labeled clauses (x, *,0) || m2Vp' and (x, x,0) || =pVy’.
Eliminating p with the help of labeled resolution yields the single labeled clause (x, *,0) || m2Vy”. This
could be a useful simplification in some contexts, but notice that it got us outside SNF and TSTs,
because y now occurs doubly primed. This means, we normally avoid eliminating such variables.
There is, nevertheless, an advantage in knowing that such a step has a proper meaning and can be
performed. If the problematic resolvent could, for instance, be shown redundant in the clause set
(e.g. by subsumption), it would be sound to remove it along with the offending literal 3", and so the
syntactic restriction would be restored.
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This brings forward the general question of expressibility of labeled clauses. We know that only
the clauses labeled by (0, ,0), (*, *,0) and (%, 0, 0), which are the labels of the initial labeled clause set,
directly correspond to initial, step and goal clauses of a TST, respectively. When clauses with other
labels arise during elimination, the subsequent procedure for deciding satisfiability of the resulting set
needs to know how to deal with them. Interestingly, according to the following theorem, we may drop
several kinds of labeled clauses just after they are created without affecting satisfiability of the clause
set.

Theorem 12. Let N be a finite set of labeled clauses and let N~ be a subset of N obtained be removing
all the clauses with label of the form (b, k,l) such that either (b =0 and k # %) or (I #0). Then N~
18 satisfiable if and only if N is.

Proof. One implication is trivial as N~ C N. For the other, we need an auxiliary definition. We
say that a label (b, k,1) is relevant for a pair (K, L) if Rk 1)(b,k,1) # 0. Now any removed clause
(b,k,1) ]| C, i.e. a clause from N \ N—, with (b = 0 and k # *) is only relevant for some pairs (K, L)
with K < k (namely those of the form k = K + s - L for some s € N), and any removed clause with
(I #0) is only relevant for pairs (K, L) with L dividing {.

Let N~ be (Ko, Lo)-satisfiable, i.e. some valuation W* satisfies (N 7)x,,L,). We may choose K
of the form Ky+i-Ly and Ly of the form j- Lo large enough such that none of the clauses from N\ N~
is relevant for (K71, Ly). Therefore (N \ N7)k,,1,) = 0. Moreover, (N7)k,,z,) € (N7 )(kq,Lo) by the
choice of Ky and Ly, and so W* satisfies Nk, r,) and thus N is (K, L1)-satisfiable. O

Ezample. Deriving an empty labeled clause during elimination does not immediately imply that the
current clause set is unsatisfiable. For instance, the label of the empty clause (*,0,2)]|| L is only
relevant for (K, L) when L divides 2, and thus the current clause set may still be (K, L)-satisfiable
for L > 2.

After filtering a clause set with the help of Theorem 12, it will only contain clauses with the
familiar labels of the initial clause set and possibly also clauses labeled by (%, k,0), k € N. These do
not pose any further expressibility complications, as they arise naturally in our calculus LPSup [18]
for LTL satisfiability.

Let us now turn our focus to reductions, namely to showing how to extend subsumption to
work with labels.® We follow the same idea as with resolution. Any standard clause represented by the
subsumed labeled clause must be subsumed by a standard clause represented by the subsuming labeled
clause. Thus we say that (b1, k1,11) || C subsumes (ba, ka,l2) || D, if C' subsumes D and the merge of the
labels (b1, k1,11) and (bg, ko, l2) is equal to (be, ko, l3). Similarly to resolution, the subsumption relation
on labeled clauses can be made stronger if we allow the subsuming clause (but not the subsumed one)
to be possibly shifted in time. For example, the clause (x,*,0) || ¢ subsumes (x,1,0)||p V ¢’ in this
sense. On the other hand, the clause (x,%,0) || ¢’ cannot subsume (x,#,0)||p V g, because there is a
standard clause represented by the latter, namely (p V q)(o) = pV q, that is not subsumed by any
standard clause represented by the former. Soundness of labeled clause elimination is stated as follows.

Theorem 13. Let N and N be sets of labeled clauses, such that N C N and for every D € N\]\~f there
exists C € N such that C subsumes D. Then N is (K, L)-satisfiable if and only if N is.

We close this section by shortly discussing the overall variable and clause elimination procedure.
As already mentioned, it is advantageous to alternate variable elimination attempts with exhaustive
application of subsumption and possibly other reductions. That’s because removing a subsumed clause
may turn elimination of a particular variable into an improvement and, on the other hand, new clauses
generated during elimination may be subject to subsumption. This holds true for the original SAT
setting as it does with labels. A detailed description on how to efficiently organize this process can be
found in [5].

8 Another useful reduction in this context is self-subsuming resolution [5]. It amounts to a resolution inference followed
by subsumption of one of the premises by the resolvent. Its labeled version can be derived by combining the presented
ideas.
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5. Experimental evaluation

For our evaluation of the effectiveness of variable and clause elimination in LTL, we extended the
preprocessing capabilities of Minisat [6] version 2.2. We kept Minisat’s main simplification loop, which
efficiently combines variable elimination with subsumption and self-subsuming resolution, along with
the fine-tuned heuristics for deciding which variables to eliminate and in what order. We emulated
labels by extending respective clauses with extra marking literals? and, to ensure correctness, we
disallowed elimination of variables that occur both primed and non-primed in the input formula.
Although this does not exploit the full potential of variable and clause elimination with labeled clauses
as described in Sect. 4, we already obtained encouraging results with this setup.

For testing we used a set of LTL benchmarks collected by Schuppan and Darmawan [16]. The set
consists of a total of 3723 problems from various sources (mostly previous papers on LTL satisfiability)
and of various flavors (application, crafted, random), and represents the most comprehensive collection
of LTL problems we are aware of. The testing proceeded in three stages. First, all the benchmarks
were translated by our tool from the original format into TSTs. Then we applied the Minisat-based
elimination tool and obtained a set of simplified TSTs. Finally, we ran two resolution-based LTL
provers on both the original and simplified TSTs to measure the effect of simplification on prover
runtime. We choose the LTL prover LS4 [20], most likely the strongest LTL solver'® currently publicly
available, and trp++ [10], a well established temporal resolution prover by Boris Konev. Having
performed the experiments on two independent implementations should allow us to draw more general
conclusions about the effects of variable and clause elimination.

The experiments were performed on our servers with 3.16 GHz Xeon CPU, 16 GB RAM, and
Debian 6.0. All the tools along with intermediate files and experiment logs can be found at http:
//www.mpi-inf .mpg.de/~suda/vce.html.

We recorded for each problem the number of variables and clauses that we were able to eliminate
during the second stage. We distinguished variables from the original problem and auziliary variables
that were introduced during the transformation in stage one. In total, 39% of the variables (7% original,
32% auxiliary) and 32% of the clauses were eliminated. The numbers vary greatly over individual
subsets of the benchmarks. For example, the family ph1t1 allowed for almost no simplification: only 3%
of the variables (just auxiliary), and 2% of the clauses could be removed. On the other hand, 99% of the
variables (almost all of them original) and 98% of the clauses were removed on the family 01formula.
While the former extreme can be explained by a concise and already almost clausal structure of the
original formulas from phltl, the latter follows from the fact that most of the variables in 01formula
occur in just one polarity, i.e. are pure. Eliminating a pure variable amounts to removal of all the
clauses in which the variable appears.!!

The results of the third stage, in which we measured the effect of simplification on the performance
of the two selected provers, are summarized in Table 1 and at the same time represented graphically
in Fig. 2. We see that both LS4 and trp++ substantially benefit from the simplification, both in the
number of solved instances and the overall runtime. On some subsets the effect is quite pronounced
(see, e.g., LS4 on alaska or trp++ on forobots), while on others it is more modest. Only on the
subset trp did the simplification result in less problems solved.'? What the table does not show,
however, is that even among the trp problems there were some only solved in the simplified form (16
such problems for LS4 and 9 for trp++). When judging the relative number of problems gained by

9For example, any goal clause C is inserted as C'V g, where g is a fresh variable designated for marking goal clauses.
101,84 solves 3556 of the above benchmarks within the timelimit of 60s, the best system reported by Schuppan and
Darmawan [16], the bounded model checker of NuSMV 2.5, is able the solve 3368 of these benchmarks under the same
conditions.

I11f x is a pure variable (literal) then N, is empty and so Ny ® N-, is empty as well.

12We currently do not have a better explanation for this phenomenon than that a seemingly innocuous change in the
presentation of the problem caused by the elimination steers the provers to a different part of the search space. (These
effects are common in theorem proving in general.) This may be partially supported be an observation that the “lost
problems” are not shared by LS4 and trp++.
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TABLE 1. Performance of the two provers on original (o) and simplified (s) problems,
grouped by problem subset. Number of problems solved by each prover within the
time limit 300 seconds and the overall time spent during the attempts are shown.
Unsolved problems contribute 300.0s, solved ones at least 0.1s due to the measurement
technique. The times spent on the actual simplification are not included; these were
observed to be negligible for most of the problems, with maximum of 0.3s for the

largest instance.

subset size LS4 - tptt -
solved time solved time
acacia 71 o) 71 7.1s 71 39.3s
S 71 7.1s 71 11.3s
o) 121 6607.0s 9 39423.2s
alaska 140 139 882.0s 12 38717.5s
anzu 11 o) 93 5754.2s 0 33300.0s
S 94 5482.2s 0 33300.0s
o) 39 4.3s 39 1198.8s
forobots 39 39 3.9s 39 194.2
rozier 2320 o) 2278 13312.9s 2063 96293.7s
S 2278 13270.7s 2120 76921.1s
schuppan 7 o) 41 9332.8s 36 11189.8s
S 41 9320.9s 37 10741.0s
trp 970 o) 940 12327.5s 364 189045.2s
S 934 11887.5s 359 190138.3s
0 3583 47345.8s 2582 370490.0s
total 3723 3596  40854.3s 2638 350023.4s
3600 . . . . . 2650 . . : ; —
3590 2600 | . - } ]
3580 2550
3570 2500
% 2:2 | % 2450
E 5540 E 2400
S 3530 |f 8 2380 1)
® a500 I = 2300 ]
3510 2250 |!
3500 LS4 original . 2200 trp++ original —
| LS4 simplified ——--—— . trp++ simplified -
3490 0 50 100 150 200 250 300 2150 0 50 100 150 200 250 300

F1GURE 2. Comparing the number of problems solved, simplified and original, within
a given time limit. Although the value ranges for LS4 (on the left) and trp++ (on
the right) differ, both figures demonstrate better performance on the simplified prob-

lems.

time (seconds)

time (seconds)
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each prover, it should be noted that many problems come from scalable families and are mostly trivial
or too difficult to solve. This leaves the “gray zone” where improvement is possible relatively small.
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To conclude, the results of our evaluation indicate that variable and clause elimination represents
a useful preprocessing technique of TSTs. Simplifying a clause set not only removes redundancies in-
troduced by a previous, potentially sub-optimal normal form transformation (when auxiliary variables
get eliminated), but usually reduces the input even further. This ultimately decreases the time needed
to solve the problem. Further improvements are expected from an independent implementation that
will harness the full potential of the mechanism of labels.

6. Discussion

We are not aware of any related work directly focusing on simplifying clause normal forms for LTL.
However, some interesting connections can be drawn with the help of Remark 3 of Sect. 2, which shows
that a TST can be viewed as a symbolic representation of a Biichi automaton. For instance, in the
classical paper [9], an automaton accepting the models of an LTL formula ¢ is constructed such that
its states are identified with sets of ’s subformulas. A closer look reveals an immediate connection
between these subformulas and the variables introduced to represent them in the SNF for ¢. The
above paper also suggests several improvements of the basic algorithm. For instance, it is advocated
that subformulas of the form p; A ps need not be stored, because the individual conjuncts pq and ps
will be later added as well and they already imply the conjunction as a whole. We can restate this on
the symbolic level as an observation that a variable introduced to represent a conjunctive subformula
can always be eliminated, which is a claim easy to verify.

We believe this connection deserves further exploration, as one could possibly use it to bring some
of the numerous techniques for optimizing explicit automata construction (see e.g. [14]) to the symbolic
level. Note, however, that the main application of the explicit automata construction approach lies in
model checking and so the resulting automaton is required to be equivalent to the original formula.
On the other hand, our clausal symbolic approach is meant for satisfiability testing only and so more
general satisfiability preserving transformations are allowed. An elimination of a variable from the
original signature of the formula ¢, or the “forgetting step” justified by Theorem 12 of Sect. 4, are
examples of transformations that do not have a counterpart on the automata side.

While the explicit notion of a symbolic representation of a Biichi automaton via a clause normal
form has received relatively little attention so far'?, symbolic approaches to LTL model checking and
satisfiability based on Binary Decision Diagrams are well known [2]. Again, it seems possible that
some optimization techniques could be shared between the two approaches. For instance, different
BDD encodings recently studied by Rozier and Vardi [15], could correspond to different ways of
turning a formula into a TST.

7. Conclusion

We have shown that variable and clause elimination, a practically successful preprocessing technique
for propositional SAT problems, can be adapted to the setting of linear temporal logic. For that
purpose we have utilized the mechanism of labeled clauses, a method for interpreting an LTL formula
as finitely represented infinite sets of standard propositional clauses. The ideas were implemented and
tested on a comprehensive set of benchmarks with encouraging results. In particular, variable and
clause elimination has been shown to significantly improve subsequent runtime of resolution-based
provers LS4 and trp++.

We would like to stress here that labeled clauses provide a general method for transferring
resolution-based reasoning from SAT to LTL. It is therefore plausible that other preprocessing tech-
niques, like, for example, the blocked clause elimination [11], can be adapted along the same lines.
Exploring this possibility will be one of the directions for future work.

13A correspondence between SNF and Biichi automata has been shown in [1]. The relevant theorem of the paper,
however, does not establish an equivalence between models of the formula and accepting runs of the automaton. Its
value for translating techniques between the symbolic and explicit approaches is, therefore, limited.
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Appendix A. LTL preliminaries

The language of Linear Temporal Logic (LTL) formulas is an extension of the propositional language
with temporal operators. The most commonly used are Next (), Always [J, Eventually ¢, Until U,
and Release R. Formally, let ¥ = {p, ¢, ...} be a (finite) signature of propositional variables, then the
set of LTL formulas is defined inductively as follows:

e any p € ¥ is a formula,
e if ¢ and 1 are formulas, then so are —¢, p A1, and ¢ V ¥,
e if ¢ and % are formulas, then so are Oy, Oy, O, U, and pRyp.

A propositional valuation, or simply a state, is a mapping W : ¥ — {0,1}. An interpretation for
an LTL formula is an infinite sequence of states W = (W;);en. The truth relation W, i = ¢ between
an interpretation W, time index i € N, and a formula ¢ is defined recursively as follows:

W,iEp iff Wi = p,
W,ilkE e iff not W,i = ¢,
WikE oAy Wil ¢and Wi,
Wik eV Wil @or W,illE 1,
WiEQe Wi+l
W, i = Op iff for every j > i, W, j = o,
W,i k= Qp iff for some j >4, W, j E ¢,
W,i = Ut iff there is j > ¢ such that W, j = ¢
and W, k = ¢ for every k, i < k < j,
W,ilE Ry iff for all j >4, W, j E ¢ or
there is j >4 with W, j E ¢ and for all k, i < k < j, W, k E .
An interpretation W is a model of an LTL formula ¢ if W,0 = ¢. A formula ¢ is called satisfiable if
it has a model, and is called wvalid if every interpretation is a model of .

Appendix B. Transforming LTL formulas to SNF

Formulas in SNF are conjunctions of temporal clauses, each of them assuming one of the following
forms:

e an initial clause: /; kj,

e a step clause: O(V; k; vV, Ol),

e an eventuality clause: O(V; k; v O1),
where kj,[;, and [ stand for standard literals, i.e. propositional variables or their negation.

The translation of an LTL formula ¢ into an equisatisfiable SNF starts by first turning ¢ into
an equivalent formula that is in Negation Normal Form (NNF), meaning the negation sign only
occurs in front of propositional variables in the leaves of the formula tree. This can be achieved by
a standard operation that “pushes negations downwards” with the help of De Morgan’s rules and
temporal equivalences like = O ¢ = O, "Up = O, and =(pUt)) = (=p)R(—1). Finally, multiple
negations are absorbed with the help of the classical equivalence =—¢ = . In what follows we assume
that ¢ is already in NNF.

The actual transformation is performed with the help of operator 7 defined in Fig. 3, which
recursively reduces any formula of the form O(—z V ¢) into the final SNF. During the process, new
“fresh” variables are being introduced (we typeset them in bold) which serve two different purposes:
They stand as names for subformulas (as in the case of the rules for, e.g., conjunction), and may also
play a role of “trackers” that influence the value of other variables not just in the current state, but
also in those to follow. This is how the semantics of, e.g., the Always operator [J is being encoded.
The overall translation is triggered by the following rule

¢ — iAT[O(RIVY)]

with a fresh variable i that represents the whole formula.
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1. 702 V1)) — O(-z Vi), iflis a literal,
2. 70Czv(eny)] — 170Gz V) ATOHz VY,
3. 7[0(-zV(eVvy))] — OFazVuVvv)A
TOuv ) AT[0(=v V)],
4. 70z V Qp)] — O(—zVOQu)A
TH(uve)l,
5. 7Oz vOp)] — Oz Vu) AOEuv Qu)A
T[O(-a v )],
6. 70z VvV Op)] — O(-z Vv Oou)A
T[O(-uv )],
7. 70Oz V (pUy)] — DO(-x Vv OV)A
O(-zVvvVvw)AO-wVu) AO-w vV OvVOw)A
TO(-uV Q) AT[0(=v V)],
8.  70(-zV(pRyY)] — O(-azVvw)AO-wVvVv)AOEwWVaVQOw)A

TO(-uV @) Ar[0(=v V)],

F1cURE 3. The rules for SNF transformation. The freshly introduced variables are in bold.

Ezample. Here we work out an example from [8] to demonstrate the translation procedure. Assume
we would like to prove the formula (Op A O(p — Op)) — OOp. In refutational theorem proving we
proceed by negating the formula and trying to show the negation to be unsatisfiable. By taking the
negation into NNF (and translating away the implication symbol) we obtain

(Op AD(=p v Op)) AOO—p
which is consequently translated into the following set of clauses:
i By the initial rule.
O(—% Vv Quq) The first conjunct by rule 6,
O(—uy V p) terminates by rule 1.
D(ﬁi V UQ)
O(—u2 V Quz)  The second conjunct by rule 5,
O(—usg V uz Vvz) inside which there is disjunction (rule 3),
O(—ugz V —p) the first argument is a literal (rule 1),
O(—-v3 V Qua)  the second goes by rule 4
O(—uq V p) and terminates by rule 1.
D(_‘i V U5)
O(—us V Qus)  The third conjunct by rule 5,
O(—us V Qug)  inside which we apply rule 6,
O(—ug V —p) and terminate by rule 1.
Notice that transformation 7 introduces more new variables than would be strictly necessary. For
example, the variable ug just “connects” the last two clauses, which could be replaced by one equiv-
alent eventuality clause O(—us V Q—p). This is a price we pay here for the simple statement of the
transformation rules in Fig. 3 (no side conditions). An actual implementation would strive to detect
the literal case as soon as possible, and thus, e.g., introduction of ug would be avoided.

Appendix C. Transforming general SNF to a TST

The transformation of general SNF to TSTs focuses on eventuality clauses. It consists in two simpli-
fication steps:

1. turning the conditional eventuality clauses into unconditional ones (of the form OOI),
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2. reducing multiple (unconditional) eventuality clauses from the SNF into just one eventuality
clause.
We present our modification of the simplifications first introduced in [4] that performs both steps at
once.
Assume that an SNF of a formula contains n (in general) conditional eventuality clauses

O(C; v Oly)
for i = 1,...,n, where Cj is the conditional part, i.e. a disjunction of literals. We remove these, and
replace them with a single unconditional eventuality clause
OOm (8)
together with the following five step clauses for every i =1,...,n:
O(C; VI V), 9)
O(=t; VOl v Ots), (10)
O(si V —t; V O-si), (11)
O(—s; V ~m), (12)
O(si V O—m), (13)

where again the bold variables are supposed to be new to the formula.

The idea behind the simplification is the following: If the condition —C} is satisfied in the current
state and the respective eventuality [; is not satisfied in the same state we start “tracking” the
eventuality with the help of the new variable t; (clause 9). The tracking variable t; is forced to stay
true also in the future states unless the eventuality [; is finally satisfied (clause 10). Now let us look
from the other side. The unconditional eventuality (clause 8) will infinitely often ensure that all the
variables s; are false in one state (clause 12) and were true in the previous state (clause 13). Thus
in the intervals between states where m holds, there will always be two consecutive states where s;
changes from false to true. But this cannot happen if we are tracking that particular eventuality at
that time (clause 11). To sum up, for each of the original eventualities we have a guarantee that in
every interval between states where m holds the eventuality was either not triggered at all (—C; was
false in the whole interval) or the eventuality was triggered and subsequently satisfied in that interval.
Please consult [4] for a formal proof.

Ezample. Our previous example contained two conditional eventuality clauses ((—iVQuq) and O(—usV
Qug). We may replace these by the following set of clauses to obtain an equisatisfiable problem with
just one unconditional eventuality clause:
O¢m,
O(—iVu VvV t1>7
D(_‘tl \Y Ou1 \ Otl),
D(Sl V _‘tl \Y O—'Sl),
O(=s1 V —m),
O(s1 VO—-m),
D(ﬁUg) V ug V t2)7
D(_‘tg vV OUG V Otz),
D(SQ V =ty V O—'Sg),
O(—s2 V —m),
O(s2 V O—m).
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