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Abstract. In social networks, influence maximization, defined as finding a small subset of nodes
that maximizes spread of influence, is NP-hard under both Linear Threshold (LT) and Independent
Cascade (IC) models, where a line of heuristic algorithms have been proposed. The simple greedy
algorithm achieves an approximation ratio of 1 —1/e. The advanced CELF algorithm, by exploiting
the submodular property of the spread function, runs 700 times faster than the simple greedy
algorithm on average. However, CELF is still inefficient, as the first iteration calls for N times of
spread estimations (N is the number of nodes in networks), which is computationally expensive,
especially on large networks. To this end, in this paper we derive an upper bound function for the
spread function. The bound can be used to reduce the number of Monte-Carlo simulation calls in
greedy algorithms, especially in the first iteration of initialization. Based on the upper bound, we
propose an efficient Upper Bound based Lazy Forward algorithm (UBLF in short), by incorporating
the bound into the CELF algorithm. We test and compare our algorithm with prior algorithms on
real-world data sets. Experimental results demonstrate that UBLF, compared with CELF, reduces
more than 95% Monte-Carlo simulations and achieves at least 2 — 5 times speed-raising.

Influence maximization, social networks, Independent Cascade model, greedy algorithms.

1. Introduction

Social networks, such as Facebook, Flickr, Twitter, have become important mediums, with rapidly
increasing users over the past few years. Through the powerful effect of word-of-mouth in social
networks, social influence plays a critical role in affecting people’s emotions, opinions and behaviors.

Much attention has been attracted to the study of social influence propagation in social networks,
among which one of the fundamental problems is influence maximization [1, 2]. The seminal work, by
Kempe, Kleinberg and Tardos [13], first formulates influence maximization as a discrete optimization
problem: Given a directed social graph with users as nodes, edge weights reflecting influence between
users and a budget/threshold number &, finding k nodes in the graph, such that by activating these
nodes, the expected spread of the influence can be maximized, based on a given stochastic influence
propagation model.

Two popularly used stochastic influence propagation models are the Independent Cascade (IC)
and Linear Threshold (LT) models [13]. In both models, at any time step, a user is represented as a
binary variable with either active (an adopter of the product) or inactive, and influence propagates
until no more users can become active. The major difference between the two models is, in the IC model
when an inactive user becomes active at a time step t, it gets exactly one chance to independently
activate its currently inactive neighbors at the next time step ¢ + 1; while in the LT model, the sum
of incoming edge weights on any node is assumed to be at most 1, every user chooses an activation
threshold uniformly at random from [0, 1], and at any time step, a node becomes activated if the sum
of incoming edge weights from the active neighbors exceeds the threshold.
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Influence maximization under both IC and LT models is NP-hard, and the spread function is
monotone and submodular [13]. A set function f: 2V — R* is monotone, if f(S) < f(T) whenever
S C T CU. The set function is submodular, if f(SU{w}) — f(S) > f(TU{w}) — f(T) forall SC T
and w € U\T. Intuitively, submodularity indicates that f has dimishing margin returns when adding
more nodes into the set.

Exploiting these two properties, Kempe et al. [13] presented a simple greedy algorithm which
repeatedly chooses the node with the maximum marginal gain and adds it to the seed set, until the
budget k is reached. However, computing exact marginal gain (or exact expected spread) under both
the IC and LT models is # P-hard [5, 6]. Hence, it is usually estimated by running Monte Carlo (MC)
simulations. The simple greedy algorithm can approximate the solution within a factor of (1—1/e—¢)
for any € > 0.

Unfortunately, the simple greedy algorithm suffers from two major sources of inefficiency. (I) The
MC simulations that run sufficiently many times (typically 10,000) to obtain an accurate estimate of
spread, has been proved very expensive, especially when the network is large. (II) The greedy algorithm
calls for O(kN) iterations at the spread estimation step, where k is the size of initially picked seed
set, and N is the number of nodes. When N is large, the algorithm has low efficiency.

Considerable work has been conducted to tackle the above two limitations. To address the first
limitation, many heuristic solutions have been proposed to improve the efficiency of seed selection,
e.g. [4, 5, 6, 11]. In these work, the heuristic algorithms can reduce computational cost in orders of
magnitude, with competitive results of influence spread level. However, none of them has a theoretical
guarantee with reliable results. In other words, it is unknown how far these heuristic solutions ap-
proximate the optimal solution. One can only borrow the simple greedy algorithm as the benchmark
for performance testing.

To tackle the second limitation, a representative work exploited the submodular property of
the objective function, and proposed a Cost-Effective Lazy Forward selection (CELF) algorithm. The
algorithm can significantly reduce the number of MC simulation calls in spread estimations. The
principle behind is that the marginal gain of a node in the current iteration cannot be more than that
in previous iterations, and thus the number of spread estimation calls can be greatly pruned, with
report that CELF improves the running time of the simple greedy algorithm by up to 700 times.

Although CELF significantly improves the running time of the simple greedy algorithm, it is still
quite slow on large networks [4]. In particular, in the initialization step, CELF needs to estimate the
spread using Monte-Carlo for each node in a network, resulting in N times of Monte-Carlo calls (N
is the total number of nodes in the network), which is time-consuming, especially when the network
is very large. The limitation leads to a question that, can we derive an upper bound of spreads which
can be used to prune unnecessary spread estimations (Monte-Carlo calls) in the CELF algorithm? To
the best of our knowledge, there is no work in the literature that mathematically discuss the upper
bound properties of the spread function.

Motivated by the above question, in this paper we derive an upper bound for greedy algorithms
in influence maximization problem. Based on the bound, we propose a new greedy algorithm Upper
Bound based Lazy Forward (UBLF for short), which outperforms the original CELF algorithm. We
summarize the contributions of the paper as follows:

1. We derive an upper bound for spread o;(S) whose exact expected estimation under the IC model
is #P-hard.

2. We propose, based on the upper bound, an efficient UBLF algorithm to discover the influential
nodes in social networks.

3. We conduct extensive experiments on real-world data sets to demonstrate the performance of
the proposed UBLF algorithm.
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TABLE 1. Major variables in the paper

l Variables ‘Descriptions

G = (V, E) | social network G with node set V edge set F
N number of nodes in the network G
S initial seed set
St set of activated nodes at step t
|S| number of nodes in S
k number of seeds to be selected
Par(v) set of parents of node v
P> probability measure with the seed set S
E° expectation operator with the seed set S
7 row vector with probabilities as in Eq. (7)
PP N by N propagation probability matrix
1 column vector with all elements being 1

2. IC Model and Greedy Algorithm

Consider a directed graph G = (V, E) with N nodes in V and edge labels pp : E — [0,1]. For each
edge (u,v) € E, pp(u,v) denotes the propagation probability that v is activated by u through the
edge. If (u,v) ¢ E, pp(u,v) = 0. Let Par(v) be the set of parent nodes of v, i.e.,

Par(v) :=={u eV, (u,v) € E}.

Given an initially activated set S C V, the independent cascade (IC) model works as follows.
Let S; C V be the set of nodes that are activated at step ¢t > 0, with Sy = S. Then, at step t + 1,
each node u € S; may activate its out-neighbors v € V\ Up<;<; S; with an independent probability of
pp(u, v), where Up<;<¢S; := SoUS1U---US,. Thus, a node v € V\ Up<;<¢ S; is activated at step t+ 1
with the probability

1— I (1—pp(uv)) (1)
uweSiNPar(v)

where the subscript u € S; N Par(v) means that node u, a parent node of v, is activated at step t. If
node v is successfully activated, then it is added into the set Syy;. The process ends at a step 7 with
S. = &. Obviously, the propagation process has N — |S| steps at most, as there are at most N — |S|
nodes outside the seed set S. Let S;y1 =@, - ,Sy_|5) = &, if 7 < N —|S|. Note that each activated
node only has one chance to activate its out-neighbors at the step right after itself is activated, and
each node stays activated once it is activated by others.

In the IC model, the influence spread of a seed set S, which is the expected number of activated
nodes by S, is denoted as o;(.9) as follow,

N—|S|

or(8) =5[] |J 5] (2)
t=0

where E® is the expectation operator with set S, the subscript 'I’ denotes the IC model, UiV: Blsl S =
SoU---USn_|g is the sets of nodes activated in all N — S| + 1 steps.

The above equation provides us convenience to treat the global influence function, o7(S5), as a
summation of locally activated node sets Sy (1 <t < N — |S]), as we will see in Proposition I in the
next section.

The influence maximization problem, under the IC model, is to find a subset S* C V such that

|S*| = k and 0(S*) = max {o7(S) | |S| =k, S CV}, e,

S* = S 3
arg‘s‘ﬁa’tggval( ) ( )
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where k is a given parameter. The problem, as proved in the work [13], is NP-hard, and a constant-ratio
approximation algorithm is feasible.

In the work [13], it is shown that the objective function o7(S) in Eq.(3) has the submodular
and monotone properties [13] with o7(@) = 0. Thus, the problem in Eq.(3) can be approximated
by the greedy algorithm as shown in Algorithm 1. Theoretically, a non-negative real valued function
f on subsets of V is submodular, if f(S U {v}) — f(S) > f(T U {v}) — f(T) for all v € V and
S C T C V. Thus, f has diminishing marginal return. Moreover, f is monotone, if f(S) < f(T) for
all S C T. For any submodular and monotone function f with f(@) = 0, the problem of finding a set
S of size k that maximizes f(S) can be approximated by the greedy algorithm in Algorithm 1. The
algorithm iteratively selects a new seed u that maximizes the incremental change of f, into the seed
set S, until k seeds are selected. It is shown that the algorithm guarantees the approximation ratio
f(S)/f(S*) > 1—1/e, where S is the output of the greedy algorithm and S* is the optimal solution.

Algorithm 1: Greedy/(k,f)
1: initial S = &
:fori=1to k do
s select u = arg max,,ey\s(o7(SU{w}) — o7(5))
25 =5U{u}
: end for
: output S

DO W N

In Algorithm 1, an important issue is that there is no efficient way to compute o;(S) given a set
S. Kempe et al. [13] run Monte-Carlo simulations of the propagation model for 10,000 trials to obtain
an accurate estimate of the expected spread, leading to very expensive computation cost. Chen et al.
[5] pointed out that computing o;(S) is actually #P-hard, by showing a reduction from the counting
problem of s-t connectness in a graph.

Based on the above observations, in order to improve the efficiency of Algorithm 1, one can either
reduce the call times of Monte-Carlo simulations in computing o7(S), or develop advanced heuristic
algorithms which reduce the number of iterations without accuracy guarantees.

3. Analysis and Approaches

In this part, we aim to derive an upper bound of o;(.5), as the exact computation of o7(S) is #P-hard
[5]. To the best of our knowledge, we are the first to discuss the upper bound of the influence spread
in the literature. The upper bound provides us a new view to design efficient algorithms in the field
of influence maximization.

3.1. Upper bound of o;(5)

Before introducing the bound in Theorem 3 and Corollary 4, we introduce two preparations first. Let
P%(v € S;) denote the probability that node v gets activated at step ¢ under the seed S, we have the
first preparation as follow,

Proposition 1. For S C V', the spread o;(S) under IC model can be calculated as
N-|S|
or(S)= > Y Pwes,. (4)
t=0 veV
Proposition 1 reveals that we can treat the global influence measure o;(S) as a summation of all
N —|S| propagation steps of local probabilities {IPS(’U €5):t>0,v€ V}.
Based on Proposition 1, a following question is, what is the relationship between two sets,

{IPS(U €S):veV}
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and
{P(veSiq):veV}h

Proposition 2. Fort=1,2,...,N —|S| and v € V, we have the following inequation

PY(v e S;) < Z IPS(u € St_l)pp(u, v).
ueV

()

Proposition 2 clearly identifies the ordering relationship between two adjacent elements in the

series P9(v € Sp), -+ ,P¥(v € Sy),--- ,PS(v € Sy_yg)) -

Now we simplify the results in Propositions 1 and 2 into the form of matrix. Let PP be the propa-

gation probabilities matrix with the (u, v) position’s element being pp(u,v). Fort =0,1,2,..., N

denote the row vector

s s
Iy = (77 (v))
as the probabilities of nodes being activated at step t, i.e.,
72 (v) =P (v € Sy).
Then, Proposition 1 can be rewritten as

N-|S|

U[(S): Z Hf-l

t=0

where 1 is a column vector with all elements being 1, and Proposition 2 can be rewritten as
Iy <1 ,-PP

where PP denotes the propagation probability matrix. Then we have Theorem 1 as follow,

Theorem 3. The upper bound of o1(S) is

N-|8|
or(S)< Y TF-PP-1.
t=0

Based on Eq.(10) in Theorem 1, one may easily raise the following two questions,

_‘S|7

(6)

(10)

e The function o7(S) is bounded by a summation of series nglsl 05 - PP! -1, if we relax the

series to Y o II§ - PP -1, then in what condition the series will be convergent?

e If the relaxed series is convergent, what’s the limit of convergence, i.e., > .o, 5 - PPt -1 =".

In the sequel, we derive Corollary 1 to answer the two questions.
Corollary 4. If the propagation probability satisfies the conditions
mlzjl)(;pp(u,v) <1 or rn;ix;pp(u,v) <1,
then the series in Eq.(10) is convergent, and the limit of convergence ezists,
or(S) <1y - (E—-PP)"'1
where E is an unit matriz and (E — PP)™! is the inverse of (E — PP).

(11)

(12)
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As the inverse (E — PP)~! may be intractable when the size of network is enormous, we adopt
the following method to calculate (E— PP)~!-1. For t > 0, we denote the column vector a; := PP?-1,
so we have

(E-PP)'.1= f:PPt 1= iat
t=0 t=0

where a;4; = PP - a;. With this iteration, we sum up ag,aj,--- until some a,, with Lj-norm less
than 1076, This transformation saves memory space during calculation, as it stores vectors instead of
matrixes in the memory.

Based on Eq.(11), we can observe that the matrix series converges on condition that either the
total influence to any node is less than 1, or the total influence diffused by any node is less than 1.
In real-world social networks, the propagation probability is often very small. Thus, Condition (11)

usually stands.

Now we use an example to explain the bound calculation.

Ezample 5. Given a graph G, as shown in Fig. 5, with propagation probability matrix in Eq. (13),

PP = : (13)

we have
(E-PP) 1.1
1 —02 —01 0 \ ' /1
B 0 1 0 -03 1
- 0 0 1 —02 1
01 0 0 1 1
1.3911
B 1.3417
= 1.2278

1.1391
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Based on Corollary 4, the upper bound of spread o;(S) with the seed set S = {@), @} can be
calculated as follow,

or(@.@) < 19D (p_pp1a

1.3911
1.3417
= (0101)-| [ Homg | =24808

1.1391
(]

3.2. UBLF algorithm

The Cost-Effective Lazy Forward (CELF) algorithm exploited the submodular property to improve
the simple greedy algorithm. The idea is that the marginal gain of a node in the current iteration
cannot be more than that in previous iterations, and thus the number of spread estimations can be
significantly reduced.

However, CELF demands N spread estimations to establish the initial bounds of marginal in-
crements, which is time expensive on large graphs. In our Upper Bound based Lazy Forward (UBLF)
algorithm, we use the derived upper bound to further reduce the number of spread estimations in
the initialization step. In doing so, the nodes will be all ranked by their upper bound scores, which
can potentially reduce the computation cost of the original CELF algorithm. We use Example 2 for
illustration.

Ezample 6. We still use the network in Fig. 5 for explanation. The goal here is to find the top-1 node
with maximal influence. For a specific node (I), according to Corollary 1, we have its upper bound as
follow,

o (@) < HO®-(E—PP)—1-1
1.3911
1.3417
= (1000)- Loo7s | = 13911
1.1391

By the same logic, we can obtain
01(@) < 1.3417, 01(@) < 1.2278, J[(@) <1.1391

Obviously, the upper bound of o; (@), 1.3911 , is the largest in the graph. Thus, we use Monte-
Carlo simulation to estimate o (@) (or explicitly calculate it due to the simple structure), and get

or (@) = 1.3788

Now, we can observe that 1.3788 is already larger than the upper bounds of o; (@), or (@) and
or (@) Thus, we don’t need extra Monte-Carlo simulations to estimate the other three nodes. Hence,
we obtain the node () which has the maximal influence in the graph.

We can observe that, by introducing the upper bounds, we can greatly reduce the number of
Monte-Carlo simulation calls. In Example 2, we use only one Monte-Carlo simulation call, while in
the CELF algorithm, we need four Monte-Carlo simulation calls. |

We summarize the UBLF algorithm in Algorithm 2.
In Algorithm 2, the column vector, § = {§u}7 denotes upper bounds of marginal increments
under the current seed set S, i.e.,

Oy > O’[(SU {u}) —J](S).

Before searching for the first node (i.e. S = @), we estimate an upper bound for each node by
Corollary 4. Then, the algorithm proceeds similar to CELF. Note that by the properties of submodular,
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Algorithm 2: UBLF
01: Input: the propagation probability matrix PP of a graph G = (V, E), a budget k
02: Output: The most influential set .S with k nodes
03: initial S+ @ and § + (E — PP)~!-1
04: for i =1 to k do
05: set I(v) <0 for v e V\S
06: while TRUE do
07: {
08:  u < argmax,cy\g 0y
09: if I(u)=0
10: Oy — MC(SU{u}) — MC(S)
11: I(u) « 1

12: end if

13: if §, > maXye v\ (sufu}) Oy
14: S+ Su{u}

15: break

16: end if

17}

18: end for

19: output S

these upper bounds of marginal increments can be dynamically adjusted by MC simulations, which
becomes smaller with the algorithm carrying on.

In the algorithm, M C(S) denotes that we employ the Monte-Carlo simulation to estimate o(S)
for the initial set S, I(v) = 0 denotes that the Monte-Carlo has not been used on the node v yet in
the current iteration, I(v) = 1 means the Monte-Carlo simulation has already been computed on the
node v.

3.3. Discussions on the upper bound

We have derived the upper bound for the spread function o;(S), and developed a new UBLF algorithm.
One may have the following concern: How large is the gap between the estimated upper bound and the
real value of o1(S) ¢

In this part, we aim to explain that, under Conditions (I) the propagation probability {pp(u,v)}
is relatively small, and (II) the number of nodes N is large enough, the upper bound asymptotically
approximates the real value of o;(S).

Formally, if the two conditions are met, we can relax Eq.(12) to Eq.(14) as follow,

or(S)~1I§ - (E— PP)~'-1 (14)

In the sequel, we will explain why Eq.(17) holds under the two given conditions. We first present
two lemmas, based on which we derive the result in Eq.(17).

Lemma 7. For small positive numbers x1,To, ..., T,, it follows that

n

1—H(1—xi) %Zml (15)

i=1
We use Example 3 to explain Lemma 1.

Ezample 8. In Fig.2, nodes w and u are newly activated at step ¢, and they are both parents of v,
with pp(w,v) = 0.1 and pp(u,v) = 0.2. Then, the probability of node v being activated at step ¢ + 1
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FIGURE 2. An example of 1D intervals

under the IC model is
1—(1-0.1)(1-0.2) =0.28,

and we can observe that the probability is also roughly equivalent to the value
0.14+0.2=0.3.

The two values are closer if the propagation probabilities pp(w, v) and pp(u,v) become smaller. [

Based on Lemma 1, we have

1- H (l—pp(u,v)) ~ Z pp(u,v) (16)

u€St—1 u€eSt_1

Lemma 9. If the number of node N is large enough, we have
P5(v ¢ ULZpSr|u € Si—1) = 1 (17)

We incorporate the two lemmas into the proof of Proposition 2, and obtain a relaxed version of
Eq.(5) as follow,
PS(ve S;) ~ Z P5 (u € Si—1)pp(u,v).
ueV
By using the matrix form, we rewrite the above approximation as follows,

¥ =117 | - PP (18)

Incorporating the above approximation into the proofs of Theorem 1 and Corollary 1, we obtain
the final result in Eq.(14).

To sum up, when the two given conditions are satisfied, the upper bound well approximates the
spread function o7(S). Hence, we have high accuracy guarantee to use the bound, (E — PP)~! -1, as
the pruning criterion. Specifically, we can choose k nodes with the highest values in the column vector
(E — PP)~! -1 as the initial seed set. For instance, in Example 5, we have

1.3965
1.3684
1.2279
1.1396

If £ = 1, we can simply choose node (D as the most influential seed node. If k = 2, we choose
nodes @ and @) as the most influential seed set. We call this approach as the Upper Bound based
algorithm (UBound in short). The algorithm is summarized below.

(E-PP)'. 1=

Algorithm 3: UBound
1: Input: the propagation probability matrix PP of a graph G = (V, E), a budget k
2: Output: The most influential set S with k& nodes
3: Score + (E — PP)~1.1
4: Select the biggest k nodes in Score as the output S
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4. Conclusion

In this paper, we derived an upper bound for the spread function in solving influence maximization
problem in social networks. Based on the bound, we proposed a new Upper Bound based Lazy Forward
algorithm (UBLF in short). Compared with CELF, UBLF significantly reduces the number of Monte-
Carlo calls, e.g., more than 95% reduction of Monte-Carlo calls than CELF in our experiments. The
experimental results also verify that UBLF can enhance CELF’s efficiency by 2-5 times at least.
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