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1. Introduction

Graphs are useful to model chemical reaction networks to reveal their structural properties [3]. In
chemical reaction networks, there are species and reactions where the chemical reactions take species
as the input and output. Accordingly, there are two kinds of graphs to represent the structures of the
species and reactions respectively in a chemical reaction network, namely the S-graph and R-graph
[2, 11]. These two kinds of graphs have been successfully applied to study conditions of multistability
or oscillations [10], to compare metabolic network [11], to explore large chemical networks [8], and etc.

An S-graph is a directed graph that consists of all the species in a chemical reaction network as
vertexes and edges defined in the following way: there is an edge from one species Si to another Sj if
there exists some reaction which outputs Sj from Si. Similarly, the directed graph R-graph consists
of all the reactions occurred in a chemical reaction network and edges defined in the following way:
there is an edge from one reaction Ri to another Rj if there exists some species which is the output
of Ri and the input of Rj .

There exist tools for analyzing the S- and R-graphs, but both of the graphs contain only partial
information of the network, and thus it is desired to have one graph which includes the species,
reactions, and their interrelationship. Indeed, we have the SR-graph to capture all the information:
the species and reactions are regarded as two kinds of vertexes and there exists an edge from a species
(reps. reaction) to a reaction (resp. species) if the species is the input (reps. output) of the reaction
[9].

Clearly SR-graphs can be decomposed into S- and R-graphs, and on the other hand, one may
need to reconstruct the SR-graphs from the given S- and R-graphs. The existence of such SR-graphs,
called the Compound-Reaction-Reconstruction (short as CRR hereafter) problem, has been studied in
[4]. In that paper the CRR problem is proved to be NP-complete, and it is formulated into a Boolean
satisfiability problem and further solved for theoretical and practical instances with existing solvers
for satisfiability, satisfiability modulo theory, and integer linear programming.

In this abstract, the CRR problem is generalized to that of reconstructing all the possible SR-
graphs which are composed of given S- and R-graphs. The solution of this problem can reveal more
information of the potential SR-graphs involved. We show how to reduce this problem to solving
structured Boolean polynomial systems and perform preliminary experiments.
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2. Problem statement

For an SR-graph of m species S1, . . . , Sm and n reactions R1, . . . , Rn, we denote the sets of input and
output species of some reaction Rk by I(Rk) and O(Rk). Then one sees that any SR-graph can be
characterized by the following pair of Boolean matrices E and P of sizes m×n and n×m respectively,
where the entries Ei,k and Pk,j of the matrices are defined as

Ei,k :=

{
1, Si ∈ I(Rk)
0, Otherwise

, Pk,j :=

{
1, Sj ∈ O(Rk)
0, Otherwise

(1 ≤ i, j ≤ m, 1 ≤ k ≤ n).

This is because all the input and output species of any reaction in the considered chemical reaction
network are recorded in the two matrices.

According to our previous description of the S- and R-graphs, the corresponding S- and R-graphs
of the chemical reaction network represented by the SR-graph above can be formulated as m×m and
n× n Boolean matrices S and R, where the entries

Si,j :=

{
1, ∃Rk s.t. Si ∈ I(Rk) and Sj ∈ O(Rk)
0, Otherwise

(1 ≤ i, j ≤ m, 1 ≤ k ≤ n),

Rk,l :=

{
1, ∃Si s.t. Si ∈ O(Rk) and Si ∈ I(Rk)
0, Otherwise

(1 ≤ k, l ≤ n, 1 ≤ i ≤ m).

For a chemical reaction network, its SR-graph, S-graph and R-graph are interrelated. Their
relationship, reflected in the matrices E, P, S, and R with Boolean operators ∨ and ∧, is as follows
[4]:

Si,j =
∧

k=1,...,n

(Ei,k ∨Pk,j), Rk,l =
∧

i=1,...,m

(Pk,i ∨Ei,l). (2.1)

The problem of our interest is to reconstruct the SR-graph of a chemical reaction network from
the S- and R-graphs, or in the matrix language we defined above, to compute E and P from S and R
such that the equations (2.1) hold. The existence of such E and P is considered in the CRR problem,
studied in [4].

In this abstract, we extend the CRR problem to compute all the possible matrices E and P
if they exist. This problem is to reconstruct all the possible chemical reaction networks from given
species and reactions with the relationship in both species and reactions known. Clearly this problem
is stronger than the CRR problem, and we call it the CRR+ problem.

CRR+(S,R) problem: Given two Boolean matrices S and R of sizes m ×m and n × n respectively,
compute all the pairs of Boolean matrices E and P of sizes m× n and n×m such that the equations
(2.1) hold.

The CRR+ problem is of interest because once it is solved, all the possible SR-graphs will be
known, and this may lead further refinement. For example, these SR-graphs may be tested with
chemical experiments to find potential chemical reactions. Obviously this step is not feasible with
merely the solution of the CRR problem.

3. Reduction to polynomial system solving

Suppose that S and R are two known Boolean matrices of sizes m × m and n × n, and E and P
are unknown Boolean matrices of sizes m× n and n×m. Now consider the Boolean polynomial ring
F2[x] := F2[E1,1, . . . ,Em,n,P1,1, . . . ,Pn,m] with all the 2mn entries Ei,j and Pk,l (1 ≤ i, l ≤ m, 1 ≤
j, k ≤ n) of E and P as variables. By using the rules x ∧ y = x · y and x ∨ y = x + y + x · y, where in
the right hands the operators + and · are respectively the addition and multiplication in F2[x, y], we
can rewrite the equations (2.1) in the form of Boolean algebra to polynomial equations in F2[x].
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Table 1. Timings for solving F = 0

m,n P Density #Var #F Time #Solutions
8 0.9 3.13/15.63 128 940 0.27 0
8 0.9 9.38/9.38 128 940 36.77 0
8 0.9 3.12/9.38 128 968 >1000 unknown
9 0.9 11.11/6.17 162 1346 8.25 0
9 0.9 12.35/6.17 162 1338 0.62 0
9 0.9 9.88/8.64 162 1338 >1000 unknown
10 0.9 10/8 200 1838 1.21 0
10 0.9 9/12 200 1811 1.17 0
11 0.9 14.05/10.74 242 2362 2.17 0
5 0.95 8/8 50 234 0.06 296
5 0.95 4/8 50 238 0.70 7759

Furthermore, if Si,j = 1 then according to the equations (2.1) and the above rewriting rules, we
will have a polynomial of degree 2n in 2n variables; otherwise

Si,j =
∧

k=1,...,n

(Ei,k ∨Pk,j) = 0,

and thus we have n quadratic equations Ei,k ·Pk,j = 0 (k = 1, . . . , n). The case for Ri,j can be analyzed
in a similar way. As one can expect, the structure of the derived Boolean polynomial equation set is
dependent on the number of zeros in the matrices S and R, namely their sparsity.

Let p and q (0 ≤ p ≤ m2, 0 ≤ q ≤ n2) be the numbers of zeros in the matrices S and R
respectively, and F ⊆ F2[x] such that F = 0 is the Boolean polynomial equation set derived from S
and R with the equations (2.1). We call an equation f ∈ F of type s (resp. r) if it is derived from
(2.1) with some Si,j (resp. Ri,j) equal to 1; and otherwise it is said to be of type 0. Then it is easy
to know that F consists of np + mq equations of type 0, m2 − p ones of type s, and n2 − q ones of
type r. The total number of equations is m2 + n2 + (n − 1)p + (m − 1)q ≥ 2mn, and thus F = 0 is
overdefined (number of variables being 2mn). In particular, the sparser the matrices S and R are, the
more overdefined F = 0 will be.

To solve F = 0 for F ⊆ F2[x], one may choose to use tools like Gröbner bases [1] and triangular
sets [12]. In particular, the F4 algorithm for computing Gröbner bases is well acknowledged for its
efficiency [5], and there also exist specific algorithms for computing Boolean triangular decomposition,
e.g., [7].

4. Experimental results

In fact in practical chemical reaction networks, the matrices S and R for the S- and R-graphs are
sparse. For example, the percentages of zeros in the above matrices in a real-world instance in [4,
Section 5.2] are all above 96%. Hence in our preliminary experiments the matrices S and R are set
sparse. In addition, we choose m=n and construct the Boolean matrices S and R randomly with the
probability P for each of their entries to be 0.

In Table 1 we provide the timings (in seconds) for selected instances in our experiments, which
are performed using F4 algorithm in Magma 2.17-1 under Scientific Linux OS release 5.5 on 8 Intel(R)
Xeon(R) CPUs E5420 at 2.50 GHz with 20.55G RAM. The columns “Density”, “#Var”, “#F”,
“Time”, and “#Solutions” in the table mean respectively the actual percentage of nonzero entries in
the random matrices S and R, the number of variables, the number of polynomials in F , the time to
compute the Gröbner basis, and the number of solutions of F = 0.

In our experiments with random matrices, we find that most polynomial systems F = 0 have
no solution. This is consistent with the experimental results in [4] on the existence of E and P in the
CRR problem chosen randomly. This could be due to the fact that when S and R are sparse, F is
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much overdefined. But we do find some random instances when F = 0 has solutions, and in this case
the number of solutions turns out to be large, which means that there exist many SR-graphs having
the same S- and R-graphs.

As regards for the efficiency, based on our preliminary experiments and those in [4, Section
5.1], we have to admit that without optimization, experimentally the method in this abstract is not
comparable to the method by solving Boolean satisfiability problems in [4]. This may be because that
we are indeed trying to solve the CRR+ one, more difficult than the CRR problem, and that the
polynomial system F has not been simplified based on its structure. Deeper analyses are still on-going
work.

5. Concluding remarks

In this extended abstract we study the problem of reconstructing all possible SR-graphs for chemical
reaction networks with given S- and R-graphs by reducing it to solving Boolean polynomial sys-
tems. Since the constructed polynomial set is quite specially structured, one can expect some further
optimizations to simplify it, so that the computational efficiency is improved. In addition, specific
complexity analyses on such structured polynomial systems may be done (like that in [6]) to gain a
better understanding on solving the CRR+ problem with polynomial systems.

The authors would like to thank the reviewers for their helpful comments and suggestion.
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