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1. Introduction

Convex polyhedra and geometric operations on them play an important role in the fields of hy-
brid model checking [4], program verification [5], and motion planning. In this extended abstract we
consider four geometric operations which are convex hulﬂ Minkowski sum, intersection, and linear
transformation of convex polyhedra. The Minkowski-Weyl Theorem states that a closed convex poly-
hedron P—we use the term polyhedron for short—can equivalently be represented as an intersection
of closed half-spaces P(A,a) = {x| Ax < a}, the so-called H-representation, or as a V-representation,
that is, the Minkowski sum P = cone(U) + conv(V) of the finitely generated cone of rays u € U
and the finitely generated convex hull of vertices v € V. Both representations differ algorithmically
[8]: While the convex hull and the Minkowski sum can easily be computed for V-representations, the
enumeration of the facets of the convex hull and the Minkowski sum is NP-hard if the polyhedra are
given in H-representation, and the contrary holds for the intersection, see Tiwary [7]. The problem of
converting between both representations is known as the verter enumeration and facet enumeration
problem, respectively, and its complexity is still open [I]. Note that, since the output size of these geo-
metric operations and also of the conversion can clearly be exponential in the input size, one typically
measures the complexity of output-sensitive algorithms in this area.

Verification of hybrid systems by symbolic state-space exploration involves repeated applica-
tions of the geometric operations named above. Using either of the V- or H-representation, exact
computations of these operations are only possible for lower-dimensional systems. In order to tackle
higher-dimensional systems, various techniques have been developed. These techniques are, for in-
stance, (i) replacement of the exact geometric operation by simplified versions, e.g. using the weak
join or the inversion join instead of the convex hull [5]; (ii) usage of other representations for which
some of the geometric operations behave nicely, e. g. zonotopes, which allow an efficient computation
of Minkowski sums [3]; or (iii) the usage of template polyhedra which are H-polyhedra P(Asy, a) where
the representation matrix Agy is fixed a priori [6].

In 2009, Le Guernic and Girard proposed the usage of support functions for hybrid model check-
ing [4]. For a—not necessarily convex—set S C R? and a direction n € R? the value of the support
function is defined as hg(n) = sup,cg n’'x, which coincides in the case of an H-polyhedron P(A4,a)
with the optimal value of the linear program “maximize n”x subject to Ax < a”. The support func-
tion behaves nicely under most geometric operations; in detail, for any two compact convex sets P and
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Q in R? and any (d x d)-transformation matrix M the following easily computable equations hold:

haey(m) = hp(MTn),  hpiq(n) = he(n) + hq(n),
hconv(PUQ) = maX(hP(n)7 hQ(n))’

while the intersection is not easily computable
hpnq(n) = igﬂgd hp(n —m) + hg(m).

Support functions, in combination with template polyhedra to overcome the difficulties with the in-
tersections, have been implemented in SpaceEx, a verification platform for hybrid systems [2].

2. Symbolic Orthogonal Projections

We present a new representation of convex polyhedra which we call symbolic orthogonal projections,
or sops, for short. Sops can be realized in any vector space K% over an ordered field K. A sop P =
P(A,L,a) C K% where A is an (m x d)-matrix, L is an (m x k)-matrix, and a is a column vector in
K™ is the orthogonal projection of an H-polyhedron P ((A L) ,a) C K%* onto K¢, where k is the
number of columns in L, i.e.

P=P(A La)={xeK?|Izc K" Ax+ Lz < a}.

Obviously, the sop P(A, L,a) is empty if and only if P ((A L) 7a) is empty, and any H-polyhedron
P = P(A,a) € K? may be represented by the sop P(A4,(),a), where () denotes the empty matrix.
Furthermore, for a sop P(4, L,a) C K¢ and any given direction n € K¢ the optimal value of the linear
program “maximize n”x subject to Ax + Lz < a” provides the value of the support function hp(n).

A sop P(A, L,a) is complete if there exists some u > 0 with 0 = A7u, 0 = LTu, and 1 = a”u.
Any sop can be completed by adding the redundant row (07,07, 1) to its representation (4, L, a).
Convex Hull, Minkowski Sum, and Intersection. Sops behave nicely under the named geometric op-
erations, as the following proposition shows. In fact, all these operations are realized as block matrices
over the original matrices. The zero matrix is denoted by O.

Proposition 1. Let Py = P(Ay,Ly,a1) and Py = P(As, Ly, a) be two sops in K. Then the following
equations hold:

conv(P,UPy) =P ((14(1;)7 (_AZQ l(/)l [(?2 _22)7 (E(l)l>>7 P, Py complete,
. Al A1 L1 O ap
rorn((5)(4 5 21(2)
_ Al L1 O a]
nom- (85 2))

Linear Mappings. Any linear mapping ¢ is uniquely determined by its transformation matriz M €
K»*m e ¢(x) = Mx. We are interested in the following three types of linear mappings, where
the (n x n)-identity matrix is denoted by I,: (i) automorphisms, having invertible transformation
matrices; (ii) orthogonal projections proj,_y, for 0 < k < d, having matrices of the form (I; O); and
(iii) elementary embeddings embedyy, for k > 0, having matrices of the form (Ig)

Proposition 2. Every transformation matriz M can be written as the product M = ST'EPT ™!, where
S and T are invertible, E is the matriz of an elementary embedding, and P is the matriz of an
orthogonal projection.

Proposition 3. Let Py = P(Ay, Ly,a1) be a sop in K%, S an invertible (d x d)-transformation matriz of
the linear mapping ¢, proj,_, an orthogonal projection with 0 < k < d, and embedy4; an elementary
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embedding with I > 0. Then the following equations hold:
P(P1) =P(A1571, Ly, ),

Al O L1 a
embedy(P1) =P O I, ,LIO|,|O ,
0o -I O 0
projdfk(Pl) - P(A7 L7 al)v

where the matrices A and L are uniquely determined by the stipulation (A L) = (A1 L1) and the
demand that A has d — k columns.

3. Conclusion

We have shown that the notion of symbolic orthogonal projections allows to efficiently represent convex
hulls, Minkowski sums, intersections, and linear transformations of polyhedra. For all these operations,
the complexity is polynomial in the input size; in fact, the first three can be realized in constant
time, whereas linear transformations involve a few matrix multiplications and Gaussian elimination.
In contrast, for both V- and H-representations some of these operations cannot be performed in
polynomial time.

We should address an issue which support functions and sops have in common: Up to now, there
is—to the author’s best knowledge—mno efficient method to decide subset relations or equalities of
polyhedra represented as support functions or symbolic orthogonal projections, and it is questionable
whether such efficient methods exists.

The following table summarizes the hardness results of performing linear transformations “M (-)”,
Minkowski sum “- 4 -”, convex hull “conv(- U -)”, intersection “- N -7, and deciding subset relations
“. C .7 on polyhedra in the respective representation, where the plus-sign indicates computability in
(weakly) polynomial time and a minus-sign indicates that the enumeration problem is either NP-hard
or its complexity is unknown.

Representation | M(+) 4 conv N- -C-
(U)

V-representation | + + + — +

H-representation | +2 — — + +

support function | +3 + + — —

Sop + + + + —

or automorphism, Ekor endomorphism

We should note that evaluation of the resulting sops, like emptiness checks or computation of their
support functions, involves linear programming. The combination of linear programming and sops is
compatible with the usage of support functions in the area of hybrid verification, and, beyond that,
it could actually be used as a proper replacement of the support functions. The bearable drawback is
that we lose the possibility to describe non-polyhedral, convex sets. On the other hand, we benefit from
the underlying H-representation, e. g. we easily find relative interior points or separating hyper-planes
of sops.
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