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Abstract. Representation learning is a fundamental subject in data mining and machine learning,
where it places emphasis on extracting descriptive feature sets from (mostly) high-dimensional
data. Consider the subfield of text mining as an example. Text documents are often represented
using Vector Space Models (VSM), a.k.a., “bag-of-words”, where each document is described by a
vector of unique terms from a corpus-level vocabulary set (dictionary). Given the nature of human
language, it is clear that this representation produces very sparse and high-dimensional feature
space, which is problematic to most classic data mining algorithms. Hence, it comes the need to
reduce the high-dimensional space using various existing and emerging techniques. In this study, we
conduct a systematic review of several existing methods of representation learning in text mining.
We include both subcategories of this field, shallow dimensionality reduction methods and deep
learning methods, from which unsupervised methods are selected for our study. To evaluate the
selected methods, we apply Support Vector Machine (SVM) - a classification method - on the new
representations and compare the performance.

Keywords. Representation learning, dimensionality reduction, deep learning, text mining, document
representation.

1. Introduction

High-dimensional data are considered problematic to most data mining and machine learning tech-
niques. This is mainly due to the curse-of-dimensionality phenomenon, in which higher dimensions
exponentially increase the associated computational cost and decrease the performance. In order to
overcome this issue, various methods of representation learning are proposed, where they all share a
common goal, to reduce the dimension of the feature space. Existing representation learning meth-
ods vary from one-layer (shallow) models to multi-layer (deep) models. This includes well-established
methods of dimensionality reduction (feature selection and transformation), as well as newly emerging
approaches (deep learning).

Text mining is among the numerous fields that suffer from the implications of high-dimensional
data. The growth of text documents available on-line has given rise to many critical issues in text
mining such as document representation, document retrieval, clustering and classification. There is
an ever increasing need for fast and efficient methods that can handle growing collections of text
data. This is mainly because Vector Space Models (VSM) are the current practice in representing text
documents, where documents are represented by vectors of term frequency. The terms (features) are
corpus dependent, and thus very high in dimension. This results in very sparse feature representations,
which makes it difficult to apply classic data mining techniques. Thus, document representation is a
key factor in many text mining tasks and applications. Good and compact representations allow for less
storage space, fast document retrieval and accurate document clustering and classification. In fact, the
success of many machine learning methods depends heavily on the choice of feature representations.
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Current practices to overcome this issue, in text mining, can be categorized into two main
schools: 1) developing algorithms and techniques that work efficiently on high dimensional sparse
feature space, and 2) attempting to map the high dimensional feature space into lower dimension
using representation learning. One example of the first approach includes adapting k-means for sparse
and high-dimensional data (e.g., spherical k-means). In this study, we believe that the second approach,
representation learning, is more appealing as it facilitates applying existing data mining approaches
once the feature space is reduced.

To date, there is a lack of a systematic study that compares existing (both classic and emerging)
document representation methods. In this paper, our main objective is to conduct a systematic review
and an exhaustive experimental study of the main existing representation methods for text documents.
We aim to identify, compare, and evaluate top representation learning methods for text mining. To
assess the quality of the representations, we study the effect of document representation on document
classification and evaluate the results achieved.

In order to have a fair comparison of the methods, we focus in this paper on unsupervised
representation learning techniques. Both supervised and semi-supervised methods are not considered
in this research. We study the following methods: Singular Value Decomposition (SVD), Principal
Component Analysis (PCA), Independent Component Analysis (ICA), Latent Dirichlet Allocation
(LDA), and deep Auto-Encoders (AE). From these techniques, SVD, PCA, and ICA are linear feature
transformation methods, LDA is a nonlinear topic modeling algorithm, and deep AE is an unsupervised
multi-layer model. We use feature selection by document frequency as the baseline for comparing the
above methods.

SVD is also known as Latent Semantic Indexing (LSI) in text mining. It is a matrix factorization
method which decomposes a matrix into singular values and singular vectors (right and left). SVD
can be used to reduce noise from the dataset, by eliminating small singular values and reconstructing
the original matrix. The right and left singular vectors can be used to learn a new representation for
both documents and terms. In that case, documents will be represented by the new set of singular
values (latent topics) instead of the terms (VSM).

PCA is a linear feature transformation method, that aims at finding a set of orthogonal (uncor-
related) Principal Components (PCs) from the original feature space. PCs are linear combinations of
the original features. The importance of PCs is measured by their corresponding variance. PCs thus
can be ordered by their variances. This means that the 1st PC captures the largest variability in the
data, and the 2nd PC captures the 2nd largest variability, and so on. PCA is used as a dimensionality
reduction method by ignoring the PCs with the lowest variance (thus, lowest variability). The number
of selected PCs is usually less than the original feature space. In text data, this means that we are
eliminating unnecessary concepts, which may be noise or outliers, and capturing the main conceptual
components, which can be used to represent each document in a lower dimensional space with little
information loss.

ICA is very similar to PCA, although it places more strict assumptions. Instead of finding
orthogonal latent variables, ICA finds non-gaussian and statistically independent hidden variables.
Statistical independence is a much stronger assumption than un-correlation. In text mining, the Inde-
pendent Components (ICs) represent latent topics in the dataset, where the independent assumption
means that topics are statistically independent.

Emerging approaches employed the concept of deep learning to text corpora, where the idea is
to automatically produce multiple levels of representations for the data. In this stream of approaches,
Ranzato and Szummer used a system of deep auto-encoders to automatically learn multiple repre-
sentations of documents in a corpus [6]. This study proposed a semi-supervised method, and showed
that even a few labeled samples can enhance the achieved results (when compared to unsupervised
methods). For a fair comparison, we adopt an unsupervised deep auto-encoder method in this work.

The rest of this paper is organized as follows. Section 2 provides a comprehensive summary of
representation learning in general and detailed discussion of selected methods. Section 3 describes the
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experimental settings adopted in this study. Section 4 presents the dataset used and results achieved.
Finally, a conclusion is presented in section 5.

2. Representation Learning

A common pipeline of any data mining task is composed of the following subtasks: data collection,
preprocessing (removing outliers, handling missing values, and cleaning noise), representation learning
(extracting a good feature representation from the data), algorithm deployment (e.g., clustering,
classification, pattern recognition), and finally result evaluation. Experiments show that even with
the best machine learning algorithms, good performance can be achieved only when the investigated
data is a good representation of the problem under study.

Generally speaking, representation learning methods can be grouped into two main categories:
single layer models (SLM)/shallow learning, and multi-layer models (MLM)/deep learning. In this
context, a multi-layered model (deep learning model) is a representation learning model which is
comprised of several layers of transformation nodes. In each layer, the nodes map the current feature
space into a lower dimension. Single layer models, as the name implies, contain only one layer of
transformation.

Methods of representation learning can also be grouped as either supervised, semi-supervised
or unsupervised. In supervised feature learning, methods use sample labels in order to acquire bet-
ter representation for the data. Examples of such methods include Information Gain (IG), Mutual
Information (MI), and χ2 statistic. On the other hand, unsupervised feature learning does not make
use of sample labels during feature learning. Ranzato and Szummer provide evidence that a semi-
supervised approach is better than a completely unsupervised approach, in deep learning [6]. In this
study, we focus on unsupervised representation learning methods for the sake of fair comparison (being
independent from other tasks). Further details of different methods are provided in the sections below.

2.1. Single Layer Models

Classic dimensionality Reduction (DR) techniques are often regarded to as SLMs. In literature, DR
methods are grouped into two main subcategories: feature selection and feature transformation.

2.1.1. Feature Selection. Feature selection is the process of reducing original feature space into a
lower dimension by eliminating less important features and selecting more important ones. There
exist a number of methods that measure the importance of each feature in the feature space, and
thus rank them by the corresponding importance value. Given sample labels, the importance of one
feature is usually measured by its “relevance” to the labels, which falls into the category of supervised
feature learning. In unsupervised feature learning, the importance is measured based on the occurrence
frequency.

Yang and Pedersen conducted a systematic comparison of five feature selection methods, includ-
ing both supervised and unsupervised techniques, which are: Document Frequency (DF), Information
Gain (IG), Mutual Information (MI), χ2 statistic (CHI), and Term Strength (TS) [10]. For details on
the selected methods and the experimental design and settings, please refer to [10]. In general, the
study assessed the validity of the methods based on the results achieved on classification on the re-
duced sets. The reported results favored both IG and CHI, while DF produced comparable results but
with much lower time and space complexity. From this study, it can be concluded that -among the five
feature selection methods -, DF is an adequate feature selection approach given its low computational
cost and relatively high reported accuracy.

There are other methods that learn features combinatorially, such as forward feature selection
and sequential feature selection. Instead of ranking each feature individually by different criteria,
these methods evaluate the importance of a set of features as a union. These approaches are often
computationally expensive, especially in large and sparse data, though with a chance to achieve better
performance as redundancy among selected features is reduced.
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2.1.2. Feature Transformation. Feature transformation methods transform the original features into
a set of new features that span a lower dimension, by using either linear or non-linear functions on the
original features. Typical examples of linear transformations include SVD, PCA, and ICA. Non-linear
transformations in text mining include - among others, LDA.
Singular Value Decomposition (SVD). SVD is a matrix factorization technique, which decomposes a
rectangular matrix to the following:

Xm,n = Um,r ∗ Sr,r ∗ V T
n,r (1)

where r is the rank of X, each column of Um,r is the left singular vector of X (eigenvector of XXT ),
each column of Vn,r is the right singular vector of X (eigenvector of XTX), and Sr,r is a diagonal
matrix of singular values of X. Matrix U and V are both column orthonormal, while entries of S are
sorted in decreasing order.

Let X be a text dataset, where m is the number of documents, and n is the feature space (terms).
The SVD results imply that there are r latent concepts in X, and the strength of the i-th concept is
the singular value Si,i. The i-th column of U shows how each document is similar to the i-th concept,
while the i-th column of V shows how each feature (term) is relevant to the i-th concept. Eliminating
small singular values in S and the corresponding columns in U and V , results in a reduced matrix,
X̂, with k singular values and singular vectors: Um,k, Sk,k and Vn,k.

X̂m,n = Um,k ∗ Sk,k ∗ V T
n,k (2)

The reconstruction X̂m,n is a rank k matrix that is the best approximation of X for minimizing the
approximate error. In other words,

||Xm,n − X̂m,n||Frobenius = minB ||Xm,n −Bm,n||Frobenius

where Bm,n is any rank k matrix. Reduced SVD, a.k.a., Latent Semantic Indexing (LSI), is used in

text mining to reduce the dimensions of the original dataset X, as shown in eq. [3]. D̂m,k is a new

document representation, and is often used to measure similarity between documents. T̂n,k is a new
term representation, and can be used to measure similarity between terms.

D̂m,k = Um,k ∗ Sk,k (3)

T̂n,k = Vn,k ∗ Sk,k (4)

Principal Component Analysis (PCA). PCA is an unsupervised, non-parametric, linear dimensionality
reduction technique. In PCA, the feature vector space is re-defined using a set of uncorrelated (i.e.,
orthogonal) principal components (PCs). The set of PCs are ranked based on how much variance
each PC captures from the original feature vector space, in which variance is assumed to indicate
importance. In other words, the first principal component captures the largest variance in the data,
the second principal component captures the second largest variance in the data, and so on. As a
result, the original feature space can be reconstructed by projecting the data over all PCs. More
importantly, the original feature space can be reduced by projecting the data over an eliminated
set of PCs, where PCs with lowest variances are eliminated first. This assures that less-important
information (i.e., noise) are removed from the data.

To understand the basic intuition behind PCA, let’s consider the following definitions from
linear algebra. Recall that, in a given vector space, every feature vector can be represented by a
linear combination of some finite orthonormal basis vectors. The naive set of orthonormal bases,
in an m-dimensional vector space, is the m × m identity matrix, in which each row represents an
orthonormal basis vector. In PCA, the goal is to find a new set of orthonormal bases which best
represents the original data. In which, the best representation is interpreted as a representation which
eliminates noise, redundancy, and finds rotations which captures the maximum variance in the set.
The notion of variance and covariance is essential in understanding the assumptions behind PCA. It
is assumed that variables (or directions) with maximum variances capture interesting structure, and
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directions with minimum variances hold less relevant knowledge and are mostly regarded as noise.
At this point, it is clear that the goal of PCA is to capture directions with maximum variance, and
the naive set of bases -more often than not-, does not capture the largest variances. As a result, it is
important to find the best rotation of the naive bases which maximizes the variance. In addition to
that, a basic intuition behind dimensionality reduction is to eliminate redundancy in the set, that is,
highly correlated variables among which, one can be easily predicted from others. Redundancy in a
multivariate data is measured using the magnitude of the covariance.

Given the above definitions, the problem of PCA is to find a transformation matrix P such
that Y = XP , where X is an m × n data matrix of m samples and n features and Y is a new de-
correlated and ordered feature vector. This means that the off-diagonal values in cov(Y ) are zeros
(no correlation), and that the diagonal variances in cov(Y ) are ordered from high to low. There are
two possible solutions to diagonalize the covariance matrix, using either eigenvector decomposition or
SVD.

The steps required to reduce the data dimensions of a dataset Xm,n with m samples and n
features using PCA are described in Alg. 1. First, X is centralized by subtracting the mean of each
feature, resulting X̂. Then, the covariance matrix CX of the centralized data is computed, where
CX is an n × n matrix, whose diagonal elements are the variances and off-diagonal elements are
the covariances. After that, the eigenvalues and eigenvectors of the covariance matrix are obtained.
The set P are composed of orthogonal eigenvectors ranked by the variances (i.e., eigenvalues). The
eigenvector with the largest eigenvalue (the first column of P ) is the first principal component. To
reduce the dimensions in the dataset, eigenvectors with low eigenvalues are eliminated. The number
of selected PCs can be determined by a threshold on the portion of variance captured. For example,
the first k PCs are selected if k is the smallest value to make the sum of the first k eigenvalues greater
than 95%. This implies that the selected PCs, P̂ , can capture 95% of the variance in the data. Y can
be finally obtained by projection over the reduced set of principal components, P̂ .

Algorithm 1 Principal Component Analysis

Require: X
1: X̂ = X− X̄ // centralize the data

2: CX = 1
m−1X̂TX̂ // covariance of the centralized data

3: P = eig(CX) // eigenvector of covariance

4: Y = X̂P̂ // project the data on selected PCs

Independent Component Analysis (ICA). ICA is an unsupervised statistical method that aims at
identifying latent variables from a set of observed variables (features). The ICA model has three main
components: random variables (x), hidden variables (s), and a mixing matrix (A). Random variables
are the observed data variables, which are often referred to as data features. In this model, it is
assumed that random variables are a linear mixture of some hidden components (see eq. [5]).

x = As (5)

where x is a vector of random variables, s is a vector of independent components, and A is the mixing
matrix.

Hidden components are also known as independent components, latent variables, hidden sources,
and/or factors. The mixing matrix determines the weights of the linear combination in the equation.
Hidden variables and the mixing matrix are unknown and need to be estimated. In ICA, it is assumed
that the hidden components are non-gaussian and statistically independent. These assumptions sim-
plify the estimation of variables, as will be seen later on.

As mentioned previously, x is the only observed (known) variable, both A and s are unknown.
If we assume that the mixing matrix A is known and has an inverse, then finding the independent
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components can be achieved by using equation [6]. From this equation we can see that ICA produces
new representation, which is a linear transformation of the original feature variables.

W = A−1

s = Wx (6)

Now, in order to solve for s, we first have to estimate W. Let y = wTx, where w is an unknown
vector. Note that if w is a row from A−1, then y is actually one of the independent components.
Then, substitute the value of x from [5], and let z = ATw. This results in y = zT s, see [7]. Thus, y
is a linear combination of the independent components, given the weights in z.

y = wTx

y = wTAs

y = zT s (7)

where
z = ATw

At this point, we make use of the Central Limit Theorem, which states that the distribution of
the standardized sum of N independent variables approaches gaussian as N approaches infinity. Given
the assumption that the independent components are non-gaussian, and using the rule of the Central
Limit Theorem, the linear combination y is more gaussian than any of the individual independent
components. This conclusion holds in all cases, given the assumptions, except in the case where there
is only one nonzero element in z. In that case, the distribution is non-gaussian since y is actually one
of the independent components.

As a result, in order to find the independent components, we need to solve for w that maximizes
non-gaussianity of y. Note that a w which maximizes non-gaussianity, minimizes the independence of
hidden variables, and will result in a z with only one nonzero element. From the above, we can see the
importance of having non-gaussian independent components. In fact, the assumptions are critical to
the success of ICA. However, ICA can still perform well if there exists only one gaussian independent
component.

Now, ICA can be thought of as an optimization problem, with an objective function that max-
imizes non-gaussianity (or minimizes independence), and an optimization algorithm that searches
for the optimum values. Theoretically, any measure of non-gaussianity can be used as an objective
function in ICA. Main examples of these measures include: Kurtosis measure, Negentropy measure,
and approximation of negentropy. The Kurtosis method is given in [8], where nonzero values indicate
non-gaussianity. It is a classical method, though it is not widely used due to its sensitivity to outliers.
Negentropy is a method based on differential entropy, which measures the entropy of continuous ran-
dom variables. Findings from information theory show that larger entropies indicate gaussian random
variables, while small values indicate non-gaussianity. Negentropy is a reliable measure of gaussianity,
however, it is computationally expensive and thus not widely used. An approximation of negentropy
is a reasonable alternative for a non-gaussianity measure, and is used widely as an objective function
for ICA.

kurt(y) = E{y4} − 3(E{y2})2 (8)

H(y) = −
∫
f(y)logf(y)dy (9)

Latent Dirichelet Allocation (LDA). LDA, proposed by Blei et al. in [1], is an unsupervised, statistical
topic modeling technique, in which it assumes that documents are composed of a mixture of hidden
topics, and topics are represented by a probability distribution over words. Thus, the general goal
of LDA is to represent each document in a corpus by a set of topics, rather than by the entire
set of corpus vocabulary. To do so, LDA adopts a generative model which is presented in Alg. 2.
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This generative model assumes that, a bag-of-words’ document is generated by first selecting the
distribution of topics (e.g., 30% topic a, and 70% topic b), then generating words constrained by the
selected topic distribution and the word distribution associated with each topic.

Algorithm 2 Latent Dirichlet Allocation: Generative Model

1: for each document do
2: Select the number of words, N , according to a poisson distribution
3: Select a mixture of topics for the document
4: for word ∈ N do // to generate every word in a document
5: Select a topic, according to the multinomial distribution in step (3)
6: Generate a word, given the multinomial word distribution for the selected topic
7: end for
8: end for

Assuming that this generative model represents how documents are generated, LDA attempts
to find the two important distributions: word distributions for topics, and topic distributions for
documents. In other words, LDA attempts to find the set of topics, that generated the observed
collection of documents, where this is achieved through backtracking the generative model. More
precisely, to learn these distributions, a number of statistical inference techniques exist where any can
be employed. Examples of possible methods includes Gibbs sampling and Expectation-Maximization
algorithm (EM).

In this study, we provide a brief description of Gibbs sampling. Let w, t, d refer to word, topic
and document respectively, and D is the set of all documents in the corpus. Let k be the number
of topics existing in D. Note that this parameter has to be specified by users, usually according
to prior knowledge about D. An appropriate setting of k is important, as small k results in broad
topic distributions and large k breaks a single topic into several refined ones. Given the above, the
probability distribution over topics for a document is denoted by p(t), and θ represents the multinomial
distribution over topics for all documents, such that θ(d) = p(t). p(w|t) is the probability distribution
over words given topic t, and φ is the multinomial distribution over words for all topics, where φ(j) =
p(w|t = j), and j is the jth topic. This being said, the task of Gibbs sampling is to infer φ and θ from
D. The procedure followed by Gibbs sampling is presented in Alg. 3.

Algorithm 3 Latent Dirichlet Allocation: Gibbs Sampling

Require: k,D
1: for each document d ∈ D do
2: Randomly assign word w to topic t
3: end for
4: repeat
5: for each document d ∈ D do // improve the random initialization
6: for each word w ∈ d and t ∈ k do
7: p(t|d) = probability distribution over topics given document d
8: p(w|t) = probability distribution over words given topic t
9: p(w|d) = p(w|t)p(t|d)

10: end for
11: end for
12: until until convergence or maximum number of iterations reached

2.2. Multi-Layer Models

Multi-layer models can be thought of as a stack of learning blocks, in which the output of each block
is provided as an input to the next block. In such models, the main objective of each block is to
reduce the dimension of the input space and thus produce a much compact representation. The idea
of deep models was inspired by the experiment in [9], in which Von Melchner et al. showed that the
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processing unit in the brain “cortex”, is not a special-purpose processor, but rather a multi-purpose
general learning block that can be tuned given the right training set. The implications of this study
have led to the idea of deep learning where the general belief is: one model can handle any task, given
the proper training. Here, we investigate one deep learning method, deep auto-encoders. The details
of this method are provided below.
Deep Auto-Encoders (AE). Deep AE is an unsupervised multi-layer model, where in each layer, a
learning block, i.e., an auto-encoder, is composed of an encoder and a decoder. The objective of each
auto-encoder is to produce a reduced and representative new feature space. Given this objective, the
task of the encoder is evident; it generates the lower dimensional codes from the high-dimensional
input space. The task of the decoder, on the other hand, is to assure that the encoded features are
representative of the original features. Thus, a decoder in this framework, attempts to reconstruct the
original input from the generated codes. The reduced feature space is assumed to be representative if
the reconstructed data is similar to the original data.

This being said, when training a deep auto-encoder, the objective is to minimize the recon-
struction error, i.e., the difference between the original and the reconstructed data, where two sets
of weights need to be learned (for encoder and decoder). According to Hinton and Salakhutdinov,
using gradient descent - similarly to neural networks - in deep models, where weights are far from
a good solution, does not provide good results [3]. As a result, the authors proposed an alternative
solution, which uses Restricted Boltzmann Machines (RBM) to initialize the weights of each layer in
the model one at a time [3]. The objective of RBM is to make the distribution of the reconstructed
input similar to the distribution of the original input. Once the training is done, the model can then
be used to reduce the dimension of the input data, one layer at a time. This results in producing new
representations with multiple levels of granularity, from each layer in the model.

3. Experimental Design

This section describes the details of the conducted experiment. The experiment is composed of five
main layers: preprocessing, term-weighting, representation learning, classification, and evaluation. The
input to the model is a bag-of-word representation of text documents.

3.1. Preprocessing

Motivated by the work of Yang and Pedersen [10], we use feature selection as a preprocessing method
to eliminate unnecessary terms from the data. Thus, the computation time of the examined algorithms
is reduced. We use both Document Frequency (DF) and Term Frequency (TF) as the preprocessing
methods, mainly due to their low computation requirements and their equivalent performance to the
best methods [10]. DF is defined as the number of documents a word appeared in, and TF is the
total number of term occurrences in the entire corpus. We eliminate terms that appeared in only
two documents, as well as terms that appeared only twice in the entire corpus. This is based on an
assumption that terms with low DF/TF are not important in representing documents.

3.2. Term weighting

In this step, we test the effect of different term weighting approaches on document representation.
Term weighting indicates the value associated with each term-document pair in the dataset. The most
intuitive approach is the word count, in which the value associated with every pair of term-document
is simply the term frequency. Different weighting approaches take into consideration term frequency,
document frequency, and a normalization factor. The reason behind adopting both term and document
frequency is, on one hand, to penalize very frequent words (e.g., stop words) and, on the other hand,
to favor unique keywords.

In this study, we adopt the notations of the SMART information retrieval system [7], as shown
in Table 1. The predefined notations specify unique characters for the three main factors: term fre-
quency, document frequency, and normalization. The notation ltc means that we used logarithmic
term frequency as specified by the first character l, idf document frequency as denoted by the middle
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Table 1. Notations of SMART information retrieval system

Term Frequency Document Frequency Normalization

n (natural): tft,d n (no): 1 n (none): 1
l (logarithm): 1 + log{tft,d} t (idf): log N

dft
c (cosine): 1√

w2
1+...+w2

M

a (augmented): 0.5 +
0.5+tft,d

max{tft,d}
p (prob idf): max(0, log N−dft

dft
)

b (boolean): 1 if tft,d > 0; 0 otherwise

L (log average):
1+log(tft,d)

1+log{avgt∈d}

character t, and cosine normalization as indicated by the last character c. In our experiments, we
used the combinations of n, l, and b term frequencies, n and t document frequencies, and n and c
normalization. As a result, we have a total of 12 unique term weightings.

3.3. Representation Learning

In the third layer, after applying various term weighting approaches, we apply selected representation
learning methods. Specifically, from single layer models, we applied SVD, PCA, ICA [4], and LDA [8],
and we used deep auto-encoders [5] from multi-layer models. In addition, we used feature selection
using DF as a baseline method.

3.4. Classification

In order to evaluate the new representations, we apply binary document classification on the reduced
sets and compare the results. Better classification performance is assumed to indicate better represen-
tation. In this study, we used Support Vector Machines (SVM) as the main classification method. For
simplicity, we only tested using the sigmoid kernel, as our objective is to evaluate various document
representation methods rather than to find the best classification method for documents.

3.5. Evaluation

To avoid any ambiguities of the results, we use 10-fold cross validation and report the average and the
standard deviation of accuracy. We also test the quality of different document representations given
different training sizes. That is, we examine the effect of different representation methods on small
training sets, starting from as small as 1% of the data and gradually increasing to up to 35% of the
data. In order to compare the performance of different measures, given different training portions, we
used ROC curves and the Area Under the Curve (AUC).

4. Experimental Evaluation

4.1. Data

Reuters [2] is a news agency with a focus on business and financial news. The preprocessed version
of the Reuters benchmark dataset has a collection of 8293 articles that appeared in Reuters newswire
in 1987. Each document is described by a vector space model of 18933 unique terms. The dataset is
labeled manually by agents from Reuters Ltd., where there is a total of 65 categories. The categories
are not equally distributed, which means that some categories have few samples while others have
larger number of samples.

In the adopted version of the data, stop words and punctuations are eliminated, terms are not
trimmed, numbers are not eliminated, and there exist misspelled terms in the dictionary. The values
in the dataset represent word count in each document. Preliminary investigation of the data confirmed
the sparsity of the feature vector; 75% of terms in the dataset occurred less than 13 times, and 50%
of terms occurred less than 5 times. These values are coherent with the fact that document-by-term
matrices are very sparse, and there exist many infrequent terms.
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Figure 1. Reuters - Earn vs. Not Earn: mean accuracy with standard deviation when the
proportion of training data varies. Each representation learning method is applied with its
best term weighting, LDA with nnn (only the term frequency) and other methods with ltn
(log of term frequency and idf).

4.2. Results

Experiments reported here are conducted using a 1-vs-all approach, where the selected labels are earn
vs. not-earn. The class proportions for the selected labels are 45% and 55% respectively. After pre-
processing the data to remove infrequent terms, we applied 12 different term weighting combinations,
followed by 6 representation learning methods. This resulted in 72 different variation of the dataset.
SVM, with 10-fold cross validation, was applied to each version of the set where the number of training
samples varied from 1% to 35%. In order to report all the results, we compute the Area Under the
Curve (AUC) for each data version, given the different training sizes. The AUC results of classification
are reported in Table 2. Fig. 1 shows the best results for each representation learning approach.

Table 2. Reuters - Earn vs. Not Earn: AUC for average accuracy

Term Representation Learning
Weighting DF PCA SVD ICA LDA AE

nnn 0.901 0.906 0.901 0.809 0.930 0.901
lnn 0.903 0.909 0.903 0.454 0.926 0.903
bnn 0.881 0.886 0.881 0.817 0.916 0.881

ntn 0.926 0.925 0.927 0.824 0.918 0.927
ltn 0.942 0.943 0.942 0.894 0.912 0.942
btn 0.939 0.940 0.939 0.414 0.908 0.939

nnc 0.649 0.666 0.649 0.478 0.537 0.650
lnc 0.633 0.659 0.633 0.414 0.537 0.633
bnc 0.566 0.610 0.566 0.776 0.537 0.566

ntc 0.564 0.608 0.564 0.785 0.537 0.564
ltc 0.545 0.567 0.545 0.851 0.537 0.545
btc 0.537 0.539 0.537 0.862 0.537 0.536
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Figure 2. Reuters - Earn vs. Not Earn: mean accuracy with standard deviation when the
proportion of training data varies. This figure shows the impact that idf has on representation
learning (and eventually on classification results). A significant improvement is achieved
when idf is applied, especially with smaller training sets.
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Figure 3. Reuters - Earn vs. Not Earn: mean accuracy with standard deviation when the
proportion of training data varies. This figure shows the impact of using features learned
from each layer’s output in a deep auto-encoder. We used a total of 4 layers where the new
dimensions are 4000, 1000, 400, and 50, respectively.
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From the achieved results, we can conclude that for both PCA and SVD, cosine normalization
has inferior effect on the classification results. The same conclusion applies to DF, LDA, and AE.
That is, in all methods except ICA, cosine normalization decreases the performance of classification.
In addition to that, document frequency −t− from the SMART notation (a.k.a., idf) has the opposite
impact. We observe that when we apply idf to almost any representation learning method, we gain
increase in the reported accuracy. In fact, idf improves classification results especially with lower
training sizes. When the portion of training size increases, idf has lower impact on the results, see
Fig. 2. For all methods except LDA and ICA, we can conclude that ltn has the best performance,
followed by btn, then ntn.

For all variations of ICA, we observe that the reported accuracies are almost consistent when the
training portions are different. That is, whether we train the classifier with only 1% of the data or 35%,
we achieve very similar results. Similarly to previous methods, cosine normalization reduces classifi-
cation performance. However, this cannot be generalized as in the −tc case, significant improvements
are achieved when cosine normalization is applied. To conclude for ICA, the best representations are
ltn, btc, and ltc respectively. As for LDA, the best term weighting schemes are: nnn, lnn, and bnn.
Both document frequency and cosine normalization have negative impact on the performance.

The performance of deep auto-encoders did not exceed other methods. In fact, the impact of
different term weights was almost similar to that of DF, PCA, and SVD. To assess the performance
of each level in deep auto-encoders, we apply SVM to the output of each layer. The layer outputs
had the following number of dimensions in order: 4000, 1000, 400, and 50. Fig. 3, shows the results
achieved, with varying training set size. In general, the largest dimension size (4000) had the best
performance. The output of the second layer, 1000 dimension, had lower performance when compared
to the previous one. Interestingly, the output of the third layer showed an improvement over the second
layer, though the dimension continued to decrease, i.e., only 400 in this layer. This implies that higher
layers in auto-encoders, which reduces the feature space, attempt to learn better and more compact
representations.

Reflecting upon the results achieved, we observe that no single method has significantly outper-
formed the rest of the selected models. DF, the simplest and most computationally inexpensive method,
achieved comparable results to time-consuming methods such as LDA and deep auto-encoders. How-
ever, experiments show that proper term weighting has significant impact on the results achieved.
Specifically, ltn outperformed other term weighting methods for all selected representation learning,
except LDA, in which experiments verified that LDA works best with word count term frequency.

5. Conclusion

In this work, we present a systematic review of representation learning methods with an application
to text mining. Our main objective is to compare existing models with new emerging models (i.e.,
deep learning). We perform document classification to evaluate the validity of each selected method.
We demonstrate that well-established single layer models such as PCA outperforms more complex
methods: LDA and deep Auto-encoders. Following this work, we will investigate the validity of other
subcategories of deep learning including supervised and semi-supervised methods.
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