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Embedded systems make use of computer units to control physical devices so that the behavior of the
controlled devices meets expected requirements, which have become ubiquitous in our modern life.
How to design correct embedded systems is a grand challenge for computer science and control theory.
Model-driven development (MDD) was considered as an effective way of developing correct complex
embedded systems, and has been successfully applied in industry [9, 14]. In the framework of MDD,
a formal model of the system to be developed is defined at the beginning, and then extensive analysis
and verification are done based on the formal model so that errors can be detected and corrected at
the very early stage of the design of the system. Afterwards, model transformation techniques are
applied to transform the abstract formal model into lower level models, even into source code. Hybrid
systems combine discrete mode changes with continuous evolutions specified in the form of differential
equations. With mathematically precise semantics, hybrid systems can serve as an appropriate model
of embedded systems [15, 2].

There are many previous work about how to prove the safety of hybrid systems without time
bounded [1, 8, 13] . On the another hand most actions of embedded system have a time limit [20, 6, 3].
In this paper we provide a method that can generate a barrier certificate which is sufficient to prove
the safety of a hybrid system for a given period of time based on the previous work [17, 11]. We
have three main contributions in this paper: (A) we present a barrier certificate condition, called
Ezxponential-Linear condition, which is proved to be a sufficient condition for the safety of the given
hybrid system in a bounded time; (B) for the semi-algebraic hybrid systems (where all functions
involved are polynomials), we propose a sound method to generate barriers using the semidefinite
programming method; (C) we give some examples to illustrate the effectiveness of our method.

A continuous system is defined by an ordinary differential equation (ODE)

&= f(x) (1)

where x € R™ and f is a Lipschitz continuous vector function from R™ to R™. Given a continuous
system (1) and an initial set, the set of all the points that the system can reach from the initial set,
following the vector fields f(x), is called the reachable set.

Our problem is: For a given system (1), an initial set, an unsafe set and a given period of time, verify

that the system will never reach a point in the unsafe set for the given period of time. In other words,
prove the intersection of the unsafe set and the reachable set in the bounded time is empty.
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Lemma 1. Given a continuous system (1), an initial set I and an unsafe set U, for any given A\,n €
R,\ < 0,7 > 0, if there exists a real-valued function p(x) € C*(R™) satisfying the following formulae:

Ve el:p(x)<0 (2)
Ve e R": Lio(z) — Ap(x) —n <0 (3)
VeeU:o(z)>n (4)

then the safety property is satisfied by the system S when t € [0, 1].
Before prove this lemma, we first proof another lemma.
Lemma 2. For a real-valued function 0(t) € C1(R™), if

{ 9 _Xo(t)—n=0
8(0) <0

where A\,n € R, A <0, >0, then VO < & <1,0(8) <.
Proof. Let A =n,0y = 0(0), then 8 < 0,6y < 0.

o0
= E_/\%Ln
a0
=0t
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do
— =t
R
do
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$9+B:<90+ﬂ)6)\t
= 0(t) = Ope™ + B(eM —1).

When 0 < € < 1, then A¢ < 0. So we have e > 1+ A¢ and thus e*¢ — 1 > \¢. For 8 < 0, then we
have B(e* — 1) < BAE = nE < n, so, B — 1) < 7. Since fpe* < 0, it is clear that

V0 <& <1,0(6) <.

= = \dt

Now, we use Lemma 2 to prove Lemma 1.

Proof. Suppose there exists a real-valued function ¢(z) satisfying the three conditions in Lemma 1.
From the second condition we have:

Lipo—Ap—n<0.

Since do(z(t)  9pd 5
Oplx(t)) _dpdr _ Op _
T e T R A et i

we have

% _ Ao —n<0 (5)

o ="
Suppose 6 is a function satisfying 6y = 6(0) = ¢(0) = ¢o < 0 and

o M=o, (6)

ot
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then from Lemma 2 we know that
YO <t <1,0(t) <n. (7)
From inequality (5) and equation (6) we have

{ (v = 0)o = ¢(0) = 6(0) =0, ()
At N —6) <.

Therefore, ¢ — § < 0 is guaranteed by Theorem 1 in [11]. Since the condition (7) hold for #, we have
VO <t <1,¢(t) <n.

It means that ¢(z) < n for any point z that the continuous system (1) can reach with ¢ € [0, 1]. But
p(x) > n for all the points in the unsafe set. So the safety property is satisfied when ¢ € [0, 1]. O

Theorem 3. (Exponential — Linear condition) Given a continuous system S, an initial set I, an
unsafe set U and a bounded time T > 0, for any given A\,n € R;A < 0,n > 0, if there exists a
real-valued function o(z) € CH(R™) satisfying the following formulae:

Veel:p(z)<0
Ve e R" : Lip(z) — Ap(x) — % <0
Ve e U:p(z) 21
then the safety property is satisfied by the system S when t € [0, T).

Proof. The difference between the conditions in Lemma 1 and Theorem 3 is just the second condition.
Then, we convert the second condition in Theorem 3 to the same form as the second condition in
Lemma 1. Let p = %, and take the place of ¢ in Theorem 3, then we have

Veel:p(x)<0
Vo € R" : Lip(x) —TAp(z) —n <0
Ve e U:p(x) >n
where f =Tf. Since TA < 0, by Lemma 1 we know
V0 <p<1,0(p) <n.
Because p = %,
YO <t <T,p(t) <n.

Therefore the safety property is satisfied when ¢ € [0, 7). O

Remark 4. If the conditions of Theorem 3 are satisfied, then p(z) = 7 is called a bounded time barrier
certificate.

Theorem 5. Given a continuous system S, an initial set I , an unsafe set U, a time bound T > 0 and an
over-approzimation set B of the reachable set without time bound, for any given \,n € R, A < 0,17 > 0,
if there exists a real-valued function p(x) € C1(R™) satisfying the following formulae:

Ve el:p(x) <0
V:CEIB%:Efap(:c)—)\go(x)—%SO
Ve e U:p(x) >n

then the safety property is satisfied by the system S when t € [0, T).
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Proof. For any given xg € I, let T(t) = {z(£)|0 < & <t,2(0) = xo}. Then, we know 7 C B. Thus the
conditions below hold for 7
{Efw(w(t)) — Xp(x(t) = % <0,
p(2(0)) = ¢(z0) < 0.
From the proof of Theorem 3 and Lemma 1, it is easy to see p(x) < n for x € T(T). Because zg is

arbitrarily chosen, we know ¢(z) < n hold for any = which is reachable with ¢ € [0, T]. Since p(z) > n
hold for any z in the unsafe set, the safety property hold when ¢ € [0, T]. O

Theorem 3 or Theorem 5 gives a sufficient condition for the safety of the system (1) for a given
period of time. It is easy to see that the real-valued function ¢(x) separate the reachable set and the
unsafe set. To find the function p(z) for the semi-algebraic hybrid systems, we can use semidefinite
programming tools such as SOSTOOLS [18] to solve the constraints in Theorem 3 and Theorem 5.

Ezample. Consider the second-order system [17, 11]:

T =y,
y:—er%x?’—y.

Given the initial set I = {(z,y) € R?|(z — 1.5)2 + y? < 0.25} and the unsafe set U = {(z,y) €
R2|z2 + y? < 0.16}, we want to verify that the system will never evolve into the unsafe set when
starting from the initial set with time from 0 to 0.5.

-0.14276 x* - 057688 1 y ...~ 3.3794 = 0

FIGURE 2. The green curve
x is the boundary of the over-
approximation set of the

It’s easy to see from Fig. 1 that the safety of this system must take time into account. We consider
the conditions in Theorem 5. First we give an over-approximation set B of the reachable set by the

FiGURE 1. The blue region
is the reachable set of the
system in example without
bounded time and the red re-
gion is the unsafe set.

reachable set, the black curve
is a time bounded barrier cer-
tificate, the blue region is the
initial set, and the red region
is the unsafe set.
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SOSTOOLS . Next, also using SOSTOOLS to obtain a time bounded barrier certificate. Fig. 2 is a
result obtained in this way.
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