Hierarchic Superposition: Completeness without
Compactness

Peter Baumgartner and Uwe Waldmann

Abstract. Many applications of automated deduction and verification require reasoning in combi-
nations of theories, such as, on the one hand (some fragment of) first-order logic, and on, the other
hand a background theory, such as some form of arithmetic. Unfortunately, due to the high expres-
sivity of the full logic, complete reasoning is impossible in general. It is a realistic goal, however,
to devise theorem provers that are “reasonably complete” in practice, and the hierarchic superpo-
sition calculus has been designed as a theoretical basis for that. In a recent paper we introduced
an extension of hierarchic superposition and proved its completeness for the fragment where every
term of the background sort is ground. In this paper, we extend this result and obtain completeness
for a larger fragment that admits variables in certain places.

1. Hierarchic Superposition

Many applications of automated deduction and verification require reasoning in combinations of the-
ories, such as, on the one hand (some fragment of) first-order logic and on the other hand some form
of arithmetic. In hierarchic superposition [2, 3] we consider the following scenario:

We assume that we have a background (“BG”) prover that accepts as input a set of clauses
over a BG signature Yg = (Eg,), where Eg is a set of BG sorts and p is a set of BG operators.
Terms/clauses over X and BG-sorted variables are called BG terms/clauses. For instance, =g might
be {int, boolg} and Qp might contain the integer numbers, +, —, <, <, true., true<, and additional
parameters «, (3,... that may be interpreted freely over the int-domain. The BG prover decides the
satisfiability of Yg-clause sets w.r.t. a BG specification, say linear integer arithmetic (LIA).

For technical reasons, we assume that equality is the only predicate symbol in our language and
that any non-equational atom p(t1,...,t,) is encoded as an equation p(t1,...,t,) = true,. We refer
to the terms that result from this encoding of atoms as atom terms; all other terms are called proper
terms. When we simply write, say, < y, this should always be taken as a shorthand for an equation
as above.

The foreground (“FG”) theorem prover accepts as inputs clauses over a signature ¥ = (Z,(Q),
where Zg C = and Qp C . The sorts in Zp = Z\ Ep and the operator symbols in Qp = Q\ Qp
are called F'G sorts and FG operators. For instance, Zr might be {list, boolr} and Q might contain
operators cons : int x list — list, length : list — int, isempty : list — boolr, and trueisempey : — boolw,
among others. X-terms that are not BG terms are called FG terms. Notice that FG terms such as
length(x) can have BG sorts.

The first author is affiliated with NICTA, which is funded by the Australian Government through the Department of
Communications and the Australian Research Council through the ICT Centre of Excellence Program.

M. Kosta and T. Sturm, eds. Proceedings of the MACIS 2013, Nanning, China, December 11-13, 2013.

Hierarchic Superposition: Completeness without Compactness 9

After abstracting out certain BG terms that occur as subterms of FG terms,' the FG prover
saturates the set of Y-clauses using the inference rules of hierarchic superposition, such as, e. g.,

l=rvC slul #%tv D
abstr((s[r] 2tV CV D)o)

Negative superposition

if (i) neither nor u is a BG term, (ii) u is not a variable, (iii) o is a simple mgu of
I and w, (iv) ro % lo, (v) (I = r)o is strictly maximal in (I = r Vv C)o, (vi) the first
premise does not have selected literals, (vii) to # so, and (viii) if the second premise
has selected literals, then s % ¢ is selected in the second premise, otherwise (s % t)o
is maximal in (s %tV D)o.

These differ from the standard superposition inference rules [1] mainly in that only the FG parts of
clauses are overlapped and that any BG clauses derived during the saturation are instead passed to
the BG prover. The BG prover implements an inference rule

c, - C,
O

Close

if Cq,...,C, are BG clauses and {C4,...,C,} is unsatisfiable w.r.t. the BG specifi-
cation.

As soon as one of the two provers detects a contradiction, the input clause set has been shown to be
inconsistent w.r.t. conservative extensions of the BG specification.

2. Refutational Completeness

There are two requirements for the refutational completeness of hierarchic superposition. The first
one is a variant of sufficient completeness: We must be able to prove that every ground BG-sorted FG
term is equal to some BG term. Sufficient completeness of a set of ¥-clauses is a property that is not
even recursively enumerable. For certain classes of Y-clause sets, however, it is possible to establish
sufficient completeness automatically [5, 3]: If all BG-sorted FG terms are ground, it suffices to add
a definition ay =~ t for every BG-sorted FG term ¢ occurring in a clause C[t], where oy is a new
parameter (BG constant); afterwards C[t] can be replaced by Cloy].

Since we can only pass finite clause sets to a BG prover, there is a second requirement for
refutational completeness, namely the compactness of the BG specification. A specification is called
compact, if every set of formulas that is unsatisfiable w.r.t. the specification has a finite unsatisfiable
subset.

It is well-known that first-order logic is compact. So, if we assume that the BG prover checks
satisfiability w.r.t., say, the first-order theory of LIA? the compactness requirement is automatically
satisfied. Unfortunately, as soon as the BG signature contains parameters, satisfiability w.r.t. the
first-order theory of LIA differs from satisfiability w.r.t. LIA over Z. Consider the following example:
Suppose that the BG signature contains the parameter « in addition to the integer numbers and the
operator symbols of LIA, and that we have a unary FG predicate symbol p and the X-clauses p(0),
—p(x) Ve < a,and —p(z) Va+ 1 < yVp(y). Starting with these clauses, hierarchic superposition

L Abstracting out a term t that occurs in a clause C[t] means replacing C[t] by z % t V C[z] for a new variable z. The
reverse operation is called unabstraction.
2That is, the set of all first-order BG sentences that hold in LIA.

10 Peter Baumgartner and Uwe Waldmann

produces a set N of BG clauses

0<a,

O+1<yiVy <o
O+1<yiVyr+1<y2Vya <a
O+1<yVyi+1<y2Vy+1<ysVys <a,

which, after removing the universally quantified variables by quantifier elimination, turns out to be
equivalent to {0 < o, 1 < ¢, 2 < 0, 3 < ... }. Each finite subset of N; is satisfiable in Z, and hence
in the first-order theory of LIA. By compactness of first-order logic, IV itself is also satisfiable in the
first-order theory of LIA, for instance in the non-standard model Q x Z with 0 := (0,0), 1 := (0, 1),
a = (1,0), (z,y) + (2',y) = (x +2',y + '), and a lexicographic ordering. On the other hand, the
set N7 is clearly unsatisfiable in Z. This leaves us two undesirable choices: If we assume that the BG
specification is given by LIA over Z, hierarchic superposition is not refutationally complete — there is
a contradiction, but we will never detect it. If we assume that the BG specification is the first-order
theory of LIA, hierarchic superposition is refutationally complete, but we get non-standard models,
that we would prefer to exclude in most applications.

3. Completeness without Compactness

Are there classes of Y-clause sets for which we can guarantee that hierarchic superposition is refu-
tationally complete even if we restrict ourselves to the standard models of linear integer or rational
arithmetic? A first answer in this direction was given in [3]: If all BG-sorted terms in a clause set are
ground, clauses are appropriately preprocessed, and some reasonable restrictions on simplifications
are observed, then the hierarchic superposition calculus can produce only finitely many different BG
clauses (up to unabstraction and duplication of literals). Refutational completeness follows immedi-
ately.

In the current paper, we extend this result significantly by permitting also BG-sorted variables
and, in certain positions, even variables with offsets.

Theorem 1. Let N be a set of clauses over the signature of linear integer arithmetic (with parameters
a, B, etc.), such that every proper term in these clauses is either (i) ground, or (ii) a variable, or
(iii) a sum x + k of a variable x and a number k > 0 that occurs on the right-hand side of a positive
literal s < x + k. If the set of ground terms occurring in N is finite, then N is satisfiable in LIA over
Z if and only if N is satisfiable w. r.t. the first-order theory of LIA.

Proof. Let N be a set of clauses with the required properties, and let T be the finite set of ground
terms occurring in N. We will show that N is equivalent to some finite set of clauses over the signature
of linear integer arithmetic, which implies that it is satisfiable in the integer numbers if and only if it
is satisfiable in the first-order theory of LIA.

In a first step, we replace every negative ordering literal =s < ¢t or —s < t by the equivalent
positive ordering literal ¢ < s or t < s. All literals of clauses in the resulting set Ny have the form
st st s<t s<t, ors<uz+k, where s and ¢ are either variables or elements of T" and k£ € N.
Note that the number of variables in clauses in Ny may be unbounded.

In order to handle the various inequality literals in a more uniform way, we introduce new binary
relation symbols <j (for k£ € N) that are defined by a <j b if and only if a < b+ k. Observe that
s <p t entails s <,, t whenever k < n. Obviously, we may replace every literal s < t by s < t, every
literal s <t by s <; t, and every literal s < x + k by s <j . Let N7 be the resulting clause set.

Hierarchic Superposition: Completeness without Compactness 11

We will now transform N7 into an equivalent set No of ground clauses. We start by eliminating
all equality literals that contain variables by exhaustively applying the following transformation rules:

Nu{Cvzs#z} — NU{C}

NuU{Cvax#t} — NU{Clx—t]} ift#x
Nu{CvVz=z} — N

Nu{Cvz=t} — NU{CVz<1t,CVt<iz} ift#x

All variables in inequality literals are then eliminated in a Fourier-Motzkin-like manner by exhaustively
applying the transformation rule
NU{CVVa<ysiVVt<pz} — NU{CVV Vtj<iin si}
i€l jeJ i€l jeJ
where x does not occur in C' and one of the index sets I and J may be empty.

The clauses in Ny are constructed over the finite set T' of proper ground terms, but the length
of the clauses in N5 is potentially unbounded. In the next step, we will transform the clauses in such
a way that any pair of terms s, ¢ from T is related by at most one literal in any clause: We apply one
of the following transformation rules as long as two terms s and ¢ occur in more than one literal:

NU{CVs<ptVs~t} — NU{CVs<pt} ifk>1
NU{CvVvs<gtVvs=t} — NU{CVs<;t}
NuU{CVvs<ptVsst} — N ifk>1
NU{CVs<gtVs#t} — NU{CVs#t}

NU{CVs<ptVs<,t} — NU{CVs<,t} ifk<n
NU{CVs<ptVt<,s} — N ifk+n>1
NU{CVs<gtVt<gs} — NU{CVs#t}
NU{CVLVL} - NU{CVL} for any literal L
NU{Cvs~tVvs&t} - N
The length of the clauses in the resulting set N3 is now bounded by im(m + 1), where m is the
cardinality of T'. Still, due to the indices of the relation symbols <j, N3 may be infinite. We introduce
an equivalence relation ~ on clauses in N3 as follows: Define C' ~ C" if for all s,¢ € T (i) s=t € C if
and only if s~ t e C’, (ii) st € Cif and only if s %t € C’, and (iii) s <t ¢ € C for some k if and
only if s <,, t € C’ for some n. This relation splits N3 into at most (3m(m+ 1)) equivalence classes.?

We will now show that each equivalence class is logically equivalent to a finite subset of itself.
Let M be some equivalence class. Since any two clauses from M differ at most in the indices of their
<g-literals, we can write every clause C; € M in the form

C;, = CV \/ Sp <gy U
1<i<n
where C' and the s; and ¢; are the same for all clauses in M. As we have mentioned above, s; <g,, &
entails s; <k, t whenever k;; < kji; so a clause C; € M entails C; € M whenever the n-tuple
(ki1, ..., kin) is pointwise smaller or equal to the n-tuple (kji,...,k;n) (that is, ky < kj for all
1 <1< n).

Let @ be the set of n-tuples of natural numbers corresponding to the clauses in M. By Dickson’s
lemma [4], for every set of tuples in N™ the subset of minimal tuples (w.r.t. the pointwise extension
of < to tuples) is finite. Let @' be the subset of minimal tuples in @, and let M’ be the set of clauses
in M that correspond to the tuples in @'. Since for every tuple in @ \ @’ there is a smaller tuple in
@', we know that every clause in M \ M’ is entailed by some clause in M’. So the equivalence class
M is logically equivalent to its finite subset M’. Since the number of equivalence classes is also finite
and all transformation rules are sound, this proves our claim. (I

3Any pair of terms s,t is related in all clauses of an equivalence class by either a literal s ~ ¢, or s £ t, or s <, t for
some n, or t <, s for some n, or no literal at all, so there are five possibilities per unordered pair of terms.

12 Peter Baumgartner and Uwe Waldmann

Corollary 2. The hierarchic superposition calculus is refutationally complete w.r.t. LIA over Z for
finite sets of 3X-clauses in which every proper BG-sorted term is either (i) ground, or (ii) a variable,
or (i) a sum x+k of a variable x and a number k > 0 that occurs on the right-hand side of a positive
literal s < x + k.4

Proof. Let N be a finite set of X-clauses with the required properties. By introducing definitions a; ~ ¢
as described above and weak abstraction we obtain a sufficiently complete finite set Ny of abstracted
clauses.

Now we run the hierarchic superposition calculus on Ny (with the same restrictions on simpli-
fications as in [3]). Let Ny be the (possibly infinite) set of BG clauses generated during the run. By
unabstracting these clauses, we obtain an equivalent set Ny of clauses that satisfy the conditions of
Thm. 1, so N» is satisfiable in LIA over Z if and only if N is satisfiable w.r.t. the first-order theory
of LTA. Since the hierarchic superposition calculus is refutationally complete w.r.t. the first-order
theory of LIA, the result follows. |

Analogous results hold for linear rational arithmetic. Let n be the least common divisor of all
numerical constants in the original clause set; then we define a <o9; b by a < b+ % and a <941 b
by a < b+ % for i € N and express every inequation literal in terms of <j. The Fourier-Motzkin
transformation rule is replaced by

N U {C\/ \/x<ki si V V tj <nj.13} — N U {C\/ V \/ tj <ki.7lj Sl}
i€l jeJ iel jeJ
where z does not occur in C, one of the index sets I and J may be empty, and k e n is defined as
k +mn — 1 if both k and n are odd, and k + n otherwise. The rest of the proof proceeds in the same

way as before.

References

[1] L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving with selection and simplification.
Journal of Logic and Computation, 4(3):217-247, 1994.

[2] L. Bachmair, H. Ganzinger, and U. Waldmann. Refutational theorem proving for hierarchic first-order
theories. Appl. Algebra Eng. Commun. Comput, 5:193-212, 1994.

[3] P. Baumgartner and U. Waldmann. Hierarchic superposition with weak abstraction. In M. P. Bonacina,
ed., 24nd Int. Conf. on Automated Deduction, 2013, LNAI 7898, pp. 39-57. Full version: Research
Report MPI-I-2013-RG1-002, Max-Planck-Institut fiir Informatik, Saarbriicken, Germany, June 2013,
http://domino.mpi-inf.mpg.de/internet/reports.nsf/NumberView/2013-RG1-002.

[4] L. E. Dickson. Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors.
Amer. J. Math., 35(4):413-422, 1913.

[5] E. Kruglov and C. Weidenbach. Superposition decides the first-order logic fragment over ground theories.
Math. in Comp. Sci., pp. 1-30, 2012.

Peter Baumgartner

NICTA and

Australian National University, Canberra, Australia
e-mail: Peter.Baumgartner@nicta.com.au

Uwe Waldmann
MPI fir Informatik, Saarbriicken, Germany
e-mail: uwe@mpi-inf .mpg.de

4Note that in the counterexample above z + 1 occurs on the left-hand side of the literal = 4+ 1 < y.

