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Abstract. Given a bivariate polynomial p(W, X) we aim at computing the supremum of the real
values x such that there exists a real value w satisfying p(w,z) = 0. We allow the coefficients
of p to depend on real parameters. Our approach relies on the notion of border polynomial and
takes advantage of triangular decomposition techniques. We report on the implementation of our
algorithm and illustrate its effectiveness with problems from the theory of robust control.

1. Introduction

The work reported in this paper is motivated by problems arising in control theory and requiring
to compute quantities which depend on parameters. A well-known source of such problems is Model
Predictive Control (MPC) for which computational strategies decompose the work on off-line and on-
line phases [18|[19] and lead to parametric programming (or parametric optimization). Another source,
which can also be handled by parametric programming, is robust and optimal control [11}12]/20}23], in
particular for linear dynamical systems with real parameters. This is, in fact, the application targeted
by the present work.

Although the primary approach for solving parametric programming problems is based on nu-
merical approximation methods [9,/10], a few methods based on symbolic computation [1,/12,/14] have
also been proposed. Symbolic approaches for solving parametric optimization problems have at least
the following advantages w.r.t. their numerical counterparts. Firstly, non-convex feasible regions are
not a theoretical concern for the symbolic approaches. Secondly, the size of the feasible parameter re-
gions, even when unbounded, does not create extra difficulty. In fact, the symbolic methods divide the
parameter space into connected components according to singularities, which are a natural measure
of the complexity of the solving process. The paper [9] includes an account on the major difficulties
faced by the approximation methods used by the numerical approaches in parametric optimization.

Before stating the problem studied here, we present our targeted application. For a linear dynam-
ical system, we aim at computing the H ., norm of its transfer matrix when this latter depends on real
parameters. We briefly review the necessary materials, following the notations of [5]. Let A, B,C, D
be real matrices with respective formats n x n, n x m, p x n, p x m. Consider the linear dynamical
system

r = Ax+ Bu (1)
y = Czr+ Du
with transfer matrix
G(s)=C(sl,—A)'B+D. (2)
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When A is said stable, that is, when all its eigenvalues of A have negative real part, one defines the
H o norm of the transfer matrix as

IG()le = SUP Tmax(G(s)) = SUD Omax(G(w)). (3)
R(s)>0 weR

Here we have opax(F) = )\En/gx(F*F), where opmax() and Apax(-) denote respectively the maximum

singular value and maximum eigenvalue of a real square matrix.

The Ho, norm of a single input single output (SISO) linear system is the peak gain of the
frequency response. For a multiple input multiple output (MIMO) system, the H, norm is the peak
gain across all input/output channels. The H ., norm as a measure is thoroughly embedded in modern
control theory. For instance, in robust control it takes the role of a robustness measure [23] and in model
order reduction it is used as an error measure |16]. In the late 90’s, a few algorithms demonstrating fast
convergence of iterative approaches and exploiting the properties of the singular values of a transfer
matrix have been developed [4-6]. Recently the methods reported in [13] and [2] compute the Hoo
norm via localizing the common roots of two or three polynomials. A new algorithm that is efficient for
descriptor systems is achieved by computing the eigenvalues of certain structured matrix pencils [3].
However, all these methods are numeric and are devoted to linear systems free of parameters.

We are now ready to state the problem studied in this paper. Let p € R[W, H][X] be a uni-
variate polynomial in X whose coefficients are multivariate polynomials in two sets of variables
W =Wy,...,W,, and H = Hy,...,H, and, with coefficients in the field R of real numbers.

For a value of h € R™ of H we evaluate p at H = h and obtain a polynomial p, € R[W][X]. We
denote by xsup(h) the supremum of the set

I, = {z R | B(wy,...,wm) €R™) pyn(x)=0} (4)

where py, 5 is the polynomial of R[X] obtained by evaluating p, at W = wi,...,wp,. In a more
compact form, this writes

rap(h) = s @ (5)

w, p(w,h,z)=0

Note the use of sup (supremum, or least upper bound) instead of max since the set II;, may not admit a
maximum, for instance, if p = wy (z — h1). Whether II;, admits a maximum or not, a supremum of that
set always exists. This results from the completeness of the real numbers, thus the following property:
every nonempty subset of the set of real numbers that is bounded from above has a supremum that
is also a real number. If the set Il is empty, by convention we take —oo as supremum. If the set
I}, is not empty and unbounded from above, then 400 is its supremum. Now we denote by xg,p the
function from R™ to R mapping h to zgup(h).

We view h as a parameter and we call Parametric Supremum Real Root Problem (PSRRP for
short) the problem of computing g, (h) for every h. In the absence of parameters, we denote by Zgyp
the supremum sup,, ;=0 ¢ and call Supremum Real Root Problem (SRRP for short) the problem
of computing Zsup. In the absence of the variables Wy, ..., W,,, PSRRP remains well defined as above.
However, the algorithmic solutions to PSRRP depend on the value of n.

The case n = 1, to which this paper is devoted, allows us to propose an algorithmic solution
which is a practically efficient and specific to this case. As mentioned above, solving PSRRP with
n = 1 is motivated by a major application of robust control theory: computing the H., norm of the
transfer matrix of a linear dynamical system with parametric uncertainty.

Before discussing our algorithmic solution to PSRRP, we walk through a few simple examples
so as to highlight the different roles of the variables W = Wy,... , W,, and H = Hy,..., H,. We fix
m = n = 1. Consider the polynomial p; = hix — wq, we have xgup(h1) = +oo for all Ay € R. Choose
another polynomial p, = h%x — w% — 1. We have zgyp(h1) = +00 if hy; # 0 and —oo otherwise. Now
consider the polynomial p3 = x + hyw? — hy — 1. Then, we have

400 h1 <0
xsup(hl) - hi+1 hy>0.
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In the subsequent sections, we shall assume n = 1 and simply write W instead of W;. We give now
an overview of our results.

In Section an algorithm for SRRP is easily derived from the theory of the border polynomial 17,
21]. We do not claim that our solution is new. In fact, we believe that it is equivalent to that of Kanno
and Smitlﬂ in [13]. However, the use of the theory of the border polynomial makes the presentation
of our solution much simpler.

In Section [3] we turn our attention to the parametric case, that is, PSRRP. Here again we
consider the border polynomial of p(W, H, X); let us denote it by f(H,X). An additional difficulty
comes from the fact that the roots of f, regarded as a univariate polynomial in X, are now functions
of the parameters H. In order to adapt the algorithm of Section [2] one needs delineability, that is, to
make the graphs of those functions locally disjoint. This is achieved by means of a real comprehensive
triangular decomposition of f(H,X) = 0, regarded as a parametric system with H as parameters. Via
point sampling, this delineability property allows us to reduce our computation to the non-parametric
case, that is, SRRP. In some exceptional cases (typically when suprema are attained on the variety
defined by f) our algorithm cannot conclude, in which cases a full cylindrical algebraic decomposition
of f(H,X) is needed.

Section [ illustrates our algorithm with a few examples, taken from the literature, applied to an
implementation realized with the RegularChains library www.regularchains.org,

2. Solving the Supremum Real Root Problem via BP/DV

Recall that, in the non-parametric case, the problem is, for a given bivariate polynomial p € R[W, X]
to compute xg,p defined by
Tsup = sup . (6)
w, p(z,w)=0
Let us view p as a parametric polynomial with parameter X. The motivation is the following. Consider
the real curve p = 0 in the (z,w)-plane and assume that it is not empty. Then, two cases arise:

(1) either for every positive real value ¢ there is a point on that curve with ¢ as an X-coordinate and
the curve is unbounded in the X-direction; then the answer to our supremum problem is +oo;

(2) or the curve is bounded in the X-direction and the supremum S is the X-coordinate of a “special”
point.

Regarding p as a parametric polynomial in X, and computing its border polynomial (BP) [21] or
its discriminant variety (DV) [15] (which are equivalent notions in the case of a parametric system
consisting of a single polynomial equation, as it follows from the results of [17]) will tell us which case
we are in. Moreover, if we are in the second case, we will deduce the value of Zgyp.

The BP/DV of p, regarded as a parametric semi-algebraic system with parameter X, consists of
all real X-values at which the real curve p = 0 is in one of the following cases:

(1) vertical (i.e. parallel to the W-axis) asymptote,
(2) singular point of the curve,
(3) critical point or singular value of the projection of the curve onto the X-axis.

Moreover, the set of all those X-values is finite and is given by the real roots of the polynomial

f = leoeftw (p) - discrimyy (p), (7)
where lcoeff and discrim denote the leading coefficient and the discriminant, respectively.
We make two observations about the polynomial p:

(1) if p admits a univariate factor u € R[WW] (thus not depending on X) such that v = 0 has real
solutions, then we clearly have sup,, ,(; w)—=0 & = +0o0.

1One should note that the primary concern of those Authors is to compute the Hoo norm of a linear dynamical system
numerically.
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(2) if p admits a univariate factor v € R[X] (thus not depending on W) then u divides lcoeffyy (p)
and thus f.

Based on these preliminary observations, we are ready to state our algorithm SupRealRoot. Let
& < -+ < & Dbe the real roots of f. Define §g = —oc0 and €.+1 = +00. The algorithm below computes
Zsup = sup{z € R | Jw € R p(w,z) = 0}.

SupRealRoot (p) begin
for i=e+1 downto 1 by —1 do {
let ¢ be a rational number s.t. &_1 <q<§&;
if p(¢,W) =0 has real roots in W then return &
if ¢ <e and p(§,W) =0 has real roots in W then return ¢;
}
return &
end

Observe that each interval ]&;_1,&;[ is a connected component of the complement of the BP/DV
of p = 0 regarded as a parametric semi-algebraic system with parameter X. Thus, the following two
properties are equivalent.

1. There exists ¢ € ]&;_1,&;[ such that p(q, W) = 0 admits at least one real solution W = w.
2. For every q € |&_1,&][ there exists at least one point on the real curve p = 0 with ¢ as X-
coordinate.

The correctness of our algorithm SupRealRoot follows immediately from the above equivalence.
Using the RegularChains library in MAPLE, we have realized a command SupRealRoot imple-
menting the above algorithm. This command takes as input a bivariate polynomial p € R[W, X| and re-
turns  Tsup = SUPy, p(z,w)=0 L together with additional information in order to support
ParametricSupRealRoot, as we shall see in the next section. To this end, our command SupRealRoot
actually returns a pair where the first item is the supremum x,, and the second one is defined below:
® 00, if Z4yp = +00 holds,

o 0, if zgyp = —00,

e a real root index 7 of an irreducible factor g of the polynomial f defining DV (i.e. the zero locus
of BP) such that ¢g(&;) = 0, indicating that the supremum is reached between the (i — 1)-th and
i-th roots of g and is equal to the latter,

e —i, if the supremum z,;, is equal to the i-th root of g but cannot be reached within a connected
component of the complement of DV, i.e., only in DV itself.

For efficiency reasons, in our implementation we have a special case for the factors g of p depending
only on w. We first factorize the polynomial f and then apply real root isolation to each irreducible
factor. Of course, isolation intervals are refined until they are pairwise disjoint such that real algebraic
numbers (namely & < --- < &) that these intervals encode can be effectively sorted.

3. Solving the Parametric Supremum Real Root Problem via Real Comprehensive
Triangular Decomposition

Recall the problem stated in : For each parameter value h € R™ compute

ZTsup(h) = sup T.
w, p(w,h,z)=0

Similarly to the non-parametric case, we define
f = leoeftw (p) x discrimw (p) € R[H, X].

Due to the role of H as a parameter of the problem, we are interested in the real roots z1(h) < -+ <
xe(h) of f regarded as a univariate polynomial in X. The difficulty is that the number of these roots
depends on h. Thus we need a case discussion for the real roots of f as a function of h.
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This case discussion can be provided by the command RealComprehensiveTriangularize [7],
applied to f and regarding H as parameters. We obtain a partition, C4,...,C,, of the parameter
space into connected components such that above each cell C; the real X-values satisfying f = 0 are
given by continuous functions z;, (h), z;,(h), ... with disjoint graphs (encoded by the data structure
square free_semi_algebraic_system |7.[8]).

For each cell C; which is full-dimensional in the parameter space, we perform the following tasks.

(1) Obtain a sample point v; of the cell C’E
(2) Call the command SupRealRoot (as defined in Section [2|for the non-parametric case) at h = v;.

Three cases arise.

(2.1) If the non-parametric SupRealRoot command returns a pair of the form [¢,m] with & €
{+00, —0c0} (that is, with m € {0,00}), then the function ParametricMaxRealRoot returns
€, Cil.

(2.2) If the non-parametric SupRealRoot returns a pair of the form [£, m] where m > 0 holds, then
we compute the polynomial g which has & as its j-th real root at h = v; and Parametric-
MaxRealRoot returns [[4, g, Ci].

(2.3) In all other cases, which can be regarded as exceptional, our method cannot conclude directly
and we are led to apply a CAD-based approach, say computing a CAD of p(x,w, h) = 0 for
h<z<uw.

In the above algorithm, cells C; which are not full-dimensional in the parameter space, as well as cells
C; leading to (2.3) (meaning that sg,p(v;) is attained on f = 0) are situations that are encountered
rarely in practice, that is, when parameters are specialized to actual values.

Using the RegularChains library in MAPLE, we have realized a command ParametricSupRealRoot
implementing the above algorithm, which is illustrated in the next section.

4. Examples

In this section, we illustrate the use of a command ParametricHinfinityNorm that we developed
in MAPLE based on the method ParametricSupRealRoot described in section The output of
ParametricHinfinityNorm has similar specifications as RealComprehensiveTriangularize: it re-
turns a partition of the parameter space into CAD cells and, above each cell, a formula for the Ho,
norm of a linear parametric dynamical system, taking its transfer matrix as input. In each case of
the output, the displayed result is a pair consisting of two items. The second one is a semi-algebraic
system describing a list of CAD cells C. The first item is a pair of the form [¢, g(h, )] such that the
Hoo norm value is the square root of the ¢-th root (in z) of the g(h,z) = 0, which is guaranteed to be
delineable for all h € C.

The first example is taken from Problem 4.8 in [22]. Given a transfer function Gy, the problem is to
compute ||G,||,, using the Bode plot and state space algorithm, respectively for ¢ = 1,0.1,0.01,0.001.
In our computation below, we treat ¢ as a real parameter with constraint 0 < ¢ <= 1. The result
consists of four cases. Since there is only one parameter, namely ¢, the corresponding semi-algebraic
set is either a point or an open interval. The value of ||G,|| is 1 for the first three cases, i.e. when
c=1,0r 3 <c<1,orc= 3. The fourth case shows that when 0 < ¢ < 1, the value of ||G]|, is
the square root of the second real root of the polynomial f = (256¢% — 768c® + 768¢* — 256¢2)22 +
(256¢5 + 32 — 480c* + 192¢?)z — 27, which can be computed by a real root isolation of a univariate
polynomial for a specified value of c¢. For instance, the value of ||G,||, at ¢ = 0.1 is 3.575787201.

2In fact, the RealComprehensiveTriangularize command computes a sample point with each of the cells C1, ..., Ce.
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> s 1= Matrix([1/({sA2+2*c*s+1)*(s+1))]1);
1

Gs'=| 73 . N,
STl (24 2cs+1) (54 1)
=> Hs := ParametricHinfinityNorm(Gs|, 's', [c»0, c<=11);
Hs:=[[[[1, squarefree_semi_algebraic_system), [cad_cell]], [[1, squarefree_semi_algebraic_system), [cad_ceill], [[1,
squarefree_semi_algebraic_system), [ cad_cell]], [| 2, squarefree_semi_algebraic_system), [ cad_cell]]], polynomial_ring)

[> Display(Hs[1]1[1], Hs[-11);
[[1,x=1=0][c=11]
> Display(Hs[1]1[2], Hs[-11);
[[1, x—1=0], {And[% <q < IJH
=> Display(Hs[1]1[3], Hs[-11);

1
I [[1,x—1:0],{c:EH
> Display(Hs[11[4]1, Hs[-11);

{[2, (256 P =768 B+ 768 ¢ = 256 ) x® + (256 & + 32 — 480 ¢* + 192 &) x— 27 = 0, [And(o <6< %m

The second example is the classical mass-spring-dampler system mi + bx + k = u, where m
is the mass [kg], b is the viscous damping coefficient [Ns/m], k is the spring constant and wu is the
force input [N]. In the following MAPLE session we apply our functions to study the H, of the mass-
spring-dampler system with positive real parameters m,b, k. We first compute the transfer function
from its state space representation A, B,C and D = 0. The output of ParametricHinfinityNorm on
this system has three cases. The first case reports the CAD cells which are not full-dimensional in
the parameter space and are not processed. The second case tells that when &k < % or k > % and

2 . . . 2
k< Tbm’ the ParametricHinfinityNorm of this system is % The third case means that when k& > 72bm7
. . - : 2m
the ParametricHinfinityNorm 1S Ve

> Matrix{[[0,1], [-k/m,-b/m]1): B := Matrix([[0], [1/m]]): € := Matrix([1,0]):
DynamicSystems:-TransferFunction(A,B,C):

3

Y
o

1
ms 4 Bs+k

=> Hn := ParametricHinfinityNorm(T:-tf, "s', [m=0, k=0, b=0]);

Hm = [[["Mot full-dimension, not processed”, [cad_cell cad_cell]], [[1. squarefrea_semi_algebraic_system)|, [cad_cell cad_cell]],
[[1, squarefree_semi_algebraic_system), |cad_cell] ||, polynormial_ring|
[+ Display¢Hm[11[11, Hm[-11);
2 >
MRS
4 m 2 m
"Not full-dimension, not processed”, ||
O<m O<m
0=k 0« h
[~ DisplayCHm[11[2], Hm[-11);
1) 1B 18
and|0<k k< - 2| and - P gl B
P 4 m) 4 m 2 m)
[1L#x—1=-0]| N
0<m 0= m
0<b 0=<b
[+ Display¢Hm[11[31, Hm[-11);
2
B
[L (-t +amip®) x—am’=0] || b
O<m
O<b

5. Concluding Remarks

Taking advantage of the notion of border polynomial and triangular decomposition techniques, we
have presented an algorithm and its implementation for computing the supremum of the real roots
of a parametric univariate polynomial. The precise formulation of this problem (with the bivariate
polynomial p(W, X') whose coefficients are real polynomials in H) targets the computation of the H.,
norm of the transfer matrix of a linear dynamical system with parametric uncertainty.

Our implementation allows us to solve the vast majority of the examples that we have found in the
literature. A few examples (like the 2-mass-2-spring-2-dampler system, which, in its full generality, has
6 parameters) cannot be solved by our code without specializing some of the parameters. However, our
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preliminary implementation offers several opportunities for optimization. For instance, in the context
of our application to parametric Ho, norm computation, the polynomial f € R[H, X] defined in
Section [3is the border polynomial of the characteristic polynomial of the square of a transfer matrix:
we have observed that f often had several irreducible factors and exploiting this fact when calling
RealComprehensiveTriangularize should greatly reduce computation costs.
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